Identification of novel androgen receptor degrading agents to treat advanced prostate cancer.

Eur J Med Chem

Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Published: May 2021

Prostate cancer (PCa) is one of the most common malignancies affecting men worldwide. Androgen receptor (AR) has been a target of PCa treatment for nearly six decades. AR antagonists/degraders can effectively treat PCa caused by increased AR overexpression. However, all approved AR antagonists have similar chemical structures and exhibit the same mode of action on the protein. Although initially effective, resistance to these AR antagonists usually develops. Therefore, this calls for the identification of novel chemical structures of AR antagonists to overcome the resistance. Herein, we employed the synergetic combination of virtual and experimental screening to identify a flavonoid compound which not only effectively inhibits AR transcriptional activity, but also induces the degradation of the protein. Based on this compound, we designed and synthesized a series of derivatives. We discovered that the most potent compound 10e could effectively inhibit AR transcriptional activity, and possessed a profound ability to cause degradation of both full length- and ARv7 truncated forms of human AR. Notably, 10e efficiently inhibited the growth of ARv7 dependent prostate cancer cell-lines, which are completely resistant to all current anti-androgens. Compound 10e also showed strong antitumor activity in the LNCaP (androgen dependent prostate cancer cell line) in vivo xenograft model. These results provide a foundation for the development of a new class of AR antagonists.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2021.113376DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
identification novel
8
androgen receptor
8
chemical structures
8
transcriptional activity
8
compound 10e
8
dependent prostate
8
novel androgen
4
receptor degrading
4
degrading agents
4

Similar Publications

Objectives: This research aimed to compare the prostate cancer (PCa) features, survival rate, and functional outcomes after open suprapubic Radical Prostatectomy (RP) between younger men (≤ 55 years) and older men (> 55 years).

Methods: In this retrospective cohort study, we studied 134 patients with clinically localized PCa who underwent RP at our centers between 2011 and 2019, with 26 (19.40%) patients aged ≤ 55.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes.

View Article and Find Full Text PDF

Background: Prostate cancer was the fourth most diagnosed cancer worldwide in 2022. Radical treatments and androgen deprivation therapy benefit newly diagnosed patients but impact quality of life, often leading to castration-resistant prostate cancer. Short-term dietary changes significantly affect the gut microbiota, which differs markedly between prostate cancer patients and healthy individuals, impacting both cancer progression and treatment response.

View Article and Find Full Text PDF

Background: The natural killer (NK) activity of peripheral blood mononuclear cells (PBMCs) is a crucial defense against the onset and spread of cancer. Studies have shown that patients with reduced NK activity are more susceptible to cancer, and NK activity tends to decrease due to cancer-induced immune suppression. Enhancing the natural cytotoxicity of PBMCs remains a significant task in cancer research.

View Article and Find Full Text PDF

Effect of Propolis on PPP2R1A and Apoptosis in Cancer Cells.

Biochem Res Int

January 2025

Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye.

Recently, it has been shown that protein phosphatase 2A (PP2A) dysfunction was common in many cancer types and was mediated by various inactivation mechanisms. Although many research studies observed antitumor effect of propolis extracts in various types of cancer, the mechanism of effect are still obscure. In this study, we investigated the effect of propolis on PPP2R1A expression and its relationship with apoptosis in the SW-620 (colorectal cancer), DU-145 and PC-3 (prostate cancer), and MCF-7 (breast cancer) cell lines, with WI-38 (healthy fibroblast) cells serving as the control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!