Exploring the spatial patterns and temporal dynamics of human brain activity has been of great interest, in the quest to better understand connectome-scale brain networks. Though modeling spatial and temporal patterns of functional brain networks have been researched for a long time, the development of a unified and simultaneous spatial-temporal model has yet to be realized. For instance, although some deep learning methods have been proposed recently in order to model functional brain networks, most of them can only represent either spatial or temporal perspective of functional Magnetic Resonance Imaging (fMRI) data and rarely model both domains simultaneously. Due to the recent success in applying sequential auto-encoders for brain decoding, in this paper, we propose a deep sparse recurrent auto-encoder (DSRAE) to be applied unsupervised to learn spatial patterns and temporal fluctuations of brain networks at the same time. The proposed DSRAE was evaluated and validated based on three tasks of the publicly available Human Connectome Project (HCP) fMRI dataset, resulting with promising evidence. To the best of our knowledge, the proposed DSRAE is among the early efforts in developing unified models that can extract connectome-scale spatial-temporal networks from 4D fMRI data simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11682-021-00469-w | DOI Listing |
CNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
J Geriatr Psychiatry Neurol
January 2025
Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China.
Within the global population, depression and anxiety are common among older adults. Tai Chi is believed to have a positive impact on these disturbances. This study examined the network structures of depression and anxiety among older Tai Chi practitioners vs non-practitioners.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFEClinicalMedicine
October 2024
Centre for Psychedelic Research, Division of Psychiatry, Department Brain Sciences, Imperial College London, United Kingdom.
Background: Psilocybin therapy (PT) produces rapid and persistent antidepressant effects in major depressive disorder (MDD). However, the long-term effects of PT have never been compared with gold-standard treatments for MDD such as pharmacotherapy or psychotherapy alone or in combination.
Methods: This is a 6-month follow-up study of a phase 2, double-blind, randomised, controlled trial involving patients with moderate-to-severe MDD.
The connectome describes the complete set of synaptic contacts through which neurons communicate. While the architecture of the $\textit{C. elegans}$ connectome has been extensively characterized, much less is known about the organization of causal signaling networks arising from functional interactions between neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!