Troponin C (TnC) is a critical regulator of skeletal muscle contraction; it binds Ca2+ to activate muscle contraction. Surprisingly, the gene encoding fast skeletal TnC (TNNC2) has not yet been implicated in muscle disease. Here, we report 2 families with pathogenic variants in TNNC2. Patients present with a distinct, dominantly inherited congenital muscle disease. Molecular dynamics simulations suggested that the pathomechanisms by which the variants cause muscle disease include disruption of the binding sites for Ca2+ and for troponin I. In line with these findings, physiological studies in myofibers isolated from patients' biopsies revealed a markedly reduced force response of the sarcomeres to [Ca2+]. This pathomechanism was further confirmed in experiments in which contractile dysfunction was evoked by replacing TnC in myofibers from healthy control subjects with recombinant, mutant TnC. Conversely, the contractile dysfunction of myofibers from patients was repaired by replacing endogenous, mutant TnC with recombinant, wild-type TnC. Finally, we tested the therapeutic potential of the fast skeletal muscle troponin activator tirasemtiv in patients' myofibers and showed that the contractile dysfunction was repaired. Thus, our data reveal that pathogenic variants in TNNC2 cause congenital muscle disease, and they provide therapeutic angles to repair muscle contractility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087209 | PMC |
http://dx.doi.org/10.1172/JCI145700 | DOI Listing |
Ophthalmic Plast Reconstr Surg
December 2024
Thrive Health, Beverly Hills.
Purpose: Teprotumumab, a novel human monoclonal antibody, has been shown to reverse the clinical manifestations of thyroid eye disease. Previous reports have suggested that it demonstrates disease-modifying properties through the reduction of orbital fat and muscle volumes. This study aims to analyze orbital volumetric change following treatment and to identify clinical and radiological predictors of response.
View Article and Find Full Text PDFMuscle Nerve
December 2024
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
Introduction And Aims: Mitochondrial myopathies are rare genetic disorders for which no effective treatment exists. We previously showed that the pharmacological cyclophilin inhibitor cyclosporine A (CsA) extends the lifespan of fast-twitch skeletal muscle-specific mitochondrial transcription factor A knockout (Tfam KO) mice, lacking the ability to transcribe mitochondrial DNA and displaying lethal mitochondrial myopathy. Our present aim was to assess whether the positive effect of CsA was associated with improved in vivo mitochondrial energy production.
View Article and Find Full Text PDFGeneration of induced pluripotent cells (hiPSCs)-derived skeletal muscle progenitor cells (SMPCs) holds great promise for regenerative medicine for skeletal muscle wasting diseases, as for example Duchenne Muscular Dystrophy (DMD). Multiple approaches, involving ectopic expression of key regulatory myogenic genes or small molecules cocktails, have been described by different groups to obtain SMPC towards cell-transplantation as a therapeutic approach to skeletal muscle diseases. However, hiPSCs-derived SMPC generated using transgene-free protocols are usually obtained in a low amount and resemble a more embryonal/fetal stage of differentiation.
View Article and Find Full Text PDFLymphangioleiomyomatosis (LAM) is a cystic lung disease that primarily affects women. LAM is caused by the invasion of metastatic smooth muscle-like cells into the lung parenchyma, leading to abnormal cell proliferation, lung remodeling and progressive respiratory failure. LAM cells have TSC gene mutations, which occur sporadically or in people with Tuberous Sclerosis Complex.
View Article and Find Full Text PDFArterial stiffness is a key contributor to cardiovascular diseases, including atherosclerosis, restenosis, and coronary artery disease, it has been characterized to be associated with the aberrant migration of vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms driving VSMC migration in stiff environments remain incompletely understood. We recently demonstrated that survivin, a member of the inhibitor of apoptosis protein family, is highly expressed in both mouse and human VSMCs cultured on stiff polyacrylamide hydrogels, where it modulates stiffness-mediated cell cycle progression and proliferation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!