The computed fluoride ion affinity (FIA) is a widely applied descriptor to gauge Lewis acidity. Like every other single-parameter Lewis acidity scale, the FIA metric suffers from the one-dimensionality, that prohibits addressing Lewis acidity by the multidimensionality it inherently requires (i. e., reference Lewis base dependency). However, a systematic screening of computed affinities other than the FIA is much less developed. Herein, we extended our CCSD(T)/CBS benchmark of different density functionals and the DLPNO-CCSD(T) method for chloride (CIA), methide (MIA), hydride (HIA), water (WA), and ammonia (AA) affinities. The best performing methods are subsequently applied to yield nearly 800 affinities for 183 p-block element compounds of group 13-16 with an estimated accuracy of <10 kJ mol . The study's output serves as a consistent library for qualitative analyses and a training set for future statistical approaches. A first holistic correlation analysis underscores the need for a multidimensional description of Lewis acidity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252043PMC
http://dx.doi.org/10.1002/cphc.202100150DOI Listing

Publication Analysis

Top Keywords

lewis acidity
16
water ammonia
8
ammonia affinities
8
affinities 183
8
183 p-block
8
p-block element
8
lewis
5
multidimensional lewis
4
acidity
4
acidity consistent
4

Similar Publications

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

The Electrochemical Iodination of Electron-Deficient Arenes.

Angew Chem Int Ed Engl

January 2025

Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany.

The iodination of electron-deficient arenes and heteroarenes is a long-standing problem in organic synthesis. Herein we describe the electrochemical iodination in nitromethane with BuNI as iodine source and supporting electrolyte under Lewis acid-free conditions in the presence of small amounts of chloride anions. The electrochemically generated reagent could be applied for the iodination of halogenated arenes, aromatic aldehydes, acids, esters, ketones, as well as nitroarenes to afford the products in good to excellent yields.

View Article and Find Full Text PDF

The aim of this study was to examine the drying kinetics of L. fruits at various maturation stages (I to V) using a range of mathematical models (Henderson and Pabis, Lewis, Logarithmic, Midilli, and Page). Additionally, an assessment of the resulting flours' quality was conducted.

View Article and Find Full Text PDF

Acyl fluorides and acyl cations represent typical reactive intermediates in organic reactions, such as Friedel-Crafts acylation. However, the comparatively stable phenyl-substituted compounds have not been fully characterized yet, offering a promising backbone. Attempts to isolate the benzoacylium cation have only been carried out starting from the acyl chloride with weaker chloride-based Lewis acids.

View Article and Find Full Text PDF

n-Alkyltrimethylammonium bromide (CTAB)-based deep eutectic solvent (DESs) has potential in the efficient delignification and utilization of carbohydrates in biomass. In this research, DESs containing Brønsted acid and Lewis acid were prepared with CTAB (alkyl-chain length 12-18), organic acids and metal chlorides, and the optimal treatment conditions were acquired by pretreatment optimization. Through the pretreatment with TTAB/LCA/Fe (1:4:0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!