Mass, moment of inertia, and amplitude of neck motion were altered during a reciprocal scanning task to investigate how night vision goggles (NVGs) use mechanistically is associated with neck trouble among rotary-wing aircrew. There were 30 subjects measured while scanning between targets at 2 amplitudes (near and far) and under 4 head supported mass conditions (combinations of helmet, NVGs, and counterweights). Electromyography (EMG) was measured bilaterally from the sternocleidomastoid and upper neck extensors. Kinematics were measured from the trunk and head. Scanning between the far amplitude targets required higher peak angular accelerations (7% increase) and neck EMG (between 1.24.5% increase), lower muscle cocontraction ratios (6.7% decrease), and fewer gaps in EMG (up to a 59% decrease) relative to the near targets. Increasing the mass of the helmet had modest effects on neck EMG, while increasing the moment of inertia did not. Target amplitude, not head supported mass configuration, had a greater effect on exposure metrics. Use of NVGs restricts field-of-view, requiring an increased amplitude of neck movement. This may play an important role in understanding links between neck trouble and NVG use.

Download full-text PDF

Source
http://dx.doi.org/10.3357/AMHP.5673.2021DOI Listing

Publication Analysis

Top Keywords

night vision
8
neck
8
reciprocal scanning
8
moment inertia
8
amplitude neck
8
neck trouble
8
head supported
8
supported mass
8
neck emg
8
vision goggle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!