Assessing Rectal Cancer Treatment Response Using Coregistered Endorectal Photoacoustic and US Imaging Paired with Deep Learning.

Radiology

From the Department of Biomedical Engineering (X.L., K.M.S.U., S.K., E.A., G.Y., Q.Z.), Division of Surgery, Barnes-Jewish Hospital (W.C., S.H., M.M.), and Department of Electrical and System Engineering (H.L.), Washington University in St. Louis, 1 Brookings Dr, Mail Box 1097, St Louis, MO 63130; Department of Pathology (D.C.) and Mallinckrodt Institute of Radiology (A.S., Q.Z.), Washington University School of Medicine, St Louis, Mo.

Published: May 2021

Background Conventional radiologic modalities perform poorly in the radiated rectum and are often unable to differentiate residual cancer from treatment scarring. Purpose To report the development and initial patient study of an imaging system comprising an endorectal coregistered photoacoustic (PA) microscopy (PAM) and US system paired with a convolution neural network (CNN) to assess the rectal cancer treatment response. Materials and Methods In this prospective study (ClinicalTrials.gov identifier NCT04339374), participants completed radiation and chemotherapy from September 2019 to September 2020 and images were obtained with the PAM/US system prior to surgery. Another group's colorectal specimens were studied ex vivo. The PAM/US system consisted of an endorectal imaging probe, a 1064-nm laser, and one US ring transducer. The PAM CNN and US CNN models were trained and validated to distinguish normal from malignant colorectal tissue using ex vivo and in vivo patient data. The PAM CNN and US CNN were then tested using additional in vivo patient data that had not been seen by the CNNs during training and validation. Results Twenty-two patients' ex vivo specimens and five patients' in vivo images (a total of 2693 US regions of interest [ROIs] and 2208 PA ROIs) were used for CNN training and validation. Data from five additional patients were used for testing. A total of 32 participants (mean age, 60 years; range, 35-89 years) were evaluated. Unique PAM imaging markers of the complete tumor response were found, specifically including recovery of normal submucosal vascular architecture within the treated tumor bed. The PAM CNN model captured this recovery process and correctly differentiated these changes from the residual tumor. The imaging system remained highly capable of differentiating tumor from normal tissue, achieving an area under the receiver operating characteristic curve of 0.98 (95% CI: 0.98, 0.99) for data from five participants. By comparison, the US CNN had an area under the receiver operating characteristic curve of 0.71 (95% CI: 0.70, 0.73). Conclusion An endorectal coregistered photoacoustic microscopy/US system paired with a convolutional neural network model showed high diagnostic performance in assessing the rectal cancer treatment response and demonstrated potential for optimizing posttreatment management. © RSNA, 2021 See also the editorial by Klibanov in this issue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8108559PMC
http://dx.doi.org/10.1148/radiol.2021202208DOI Listing

Publication Analysis

Top Keywords

cancer treatment
16
rectal cancer
12
treatment response
12
pam cnn
12
assessing rectal
8
imaging system
8
endorectal coregistered
8
coregistered photoacoustic
8
system paired
8
neural network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!