Brain rhythm bursts are enhanced by multiplicative noise.

Chaos

Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.

Published: January 2021

AI Article Synopsis

  • The text discusses the role of noise in inducing brain rhythms, particularly focusing on the interaction of multiplicative and additive noise in generating bursts of activity in neural populations.
  • A stochastic model is used to analyze excitatory and inhibitory neuronal dynamics, which demonstrates how noise affects oscillatory behavior and synchronization among neurons.
  • Findings suggest that multiplicative noise can enhance network synchronization and lead to new dynamics, such as a "virtual limit cycle," altering the stability of neural activity around fixed points.

Article Abstract

Many healthy and pathological brain rhythms, including beta and gamma rhythms and essential tremor, are suspected to be induced by noise. This yields randomly occurring, brief epochs of higher amplitude oscillatory activity known as "bursts," the statistics of which are important for proper neural function. Here, we consider a more realistic model with both multiplicative and additive noise instead of only additive noise, to understand how state-dependent fluctuations further affect rhythm induction. For illustrative purposes, we calibrate the model at the lower end of the beta band that relates to movement; parameter tuning can extend the relevance of our analysis to the higher frequency gamma band or to lower frequency essential tremors. A stochastic Wilson-Cowan model for reciprocally as well as self-coupled excitatory (E) and inhibitory (I) populations is analyzed in the parameter regime where the noise-free dynamics spiral in to a fixed point. Noisy oscillations known as quasi-cycles are then generated by stochastic synaptic inputs. The corresponding dynamics of E and I local field potentials can be studied using linear stochastic differential equations subject to both additive and multiplicative noises. As the prevalence of bursts is proportional to the slow envelope of the E and I firing activities, we perform an envelope-phase decomposition using the stochastic averaging method. The resulting envelope dynamics are uni-directionally coupled to the phase dynamics as in the case of additive noise alone but both dynamics involve new noise-dependent terms. We derive the stationary probability and compute power spectral densities of envelope fluctuations. We find that multiplicative noise can enhance network synchronization by reducing the magnitude of the negative real part of the complex conjugate eigenvalues. Higher noise can lead to a "virtual limit cycle," where the deterministically stable eigenvalues around the fixed point acquire a positive real part, making the system act more like a noisy limit cycle rather than a quasi-cycle. Multiplicative noise can thus exacerbate synchronization and possibly contribute to the onset of symptoms in certain motor diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0022350DOI Listing

Publication Analysis

Top Keywords

multiplicative noise
12
additive noise
12
noise
8
fixed point
8
multiplicative
5
dynamics
5
brain rhythm
4
rhythm bursts
4
bursts enhanced
4
enhanced multiplicative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!