Balancing Cost and Accuracy in Quantum Mechanical Simulations on Collagen Protein Models.

J Chem Theory Comput

Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Centre, University of Turin, Via P. Giuria 7, 10125, Turin, Italy.

Published: April 2021

Collagen proteins are spread in almost every vertebrate's tissue with mechanical function. The defining feature of this fundamental family of proteins is its well-known collagen triple-helical domain. This helical domain can have different geometries, varying in helical elongation and interstrands contact, as a function of the amino acidic composition. The helical geometrical features play an important role in the interaction of the collagen protein with cell receptors, but for the vast majority of collagen compositions, these geometrical features are unknown. Quantum mechanical (QM) simulations based on the density functional theory (DFT) provide a robust approach to characterize the scenario on the collagen composition-structure relationships. In this work, we analyze the role of the adopted computational method in predicting the collagen structure for two purposes. First, we look for a cost-effective computational approach to apply to a large-scale composition-structure analysis. Second, we attempt to assess the robustness of the predictions by varying the QM methods. Therefore, we have run geometry optimization on periodic models of the collagen protein using a variety of approaches based on the most commonly used DFT functionals (PBE, HSE06, and B3LYP) with and without dispersion correction (D3). We have coupled these methods with several different basis sets, looking for the highest accuracy/cost ratio. Furthermore, we have studied the performance of the composite HF-3c method and the semiempirical GFN1-xTB method. Our results identify a computational recipe that is potentially capable of predicting collagen structural features in line with DFT simulations, with orders of magnitude reduced computational cost, encouraging further investigations on the topic.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.1c00015DOI Listing

Publication Analysis

Top Keywords

collagen protein
12
collagen
9
quantum mechanical
8
mechanical simulations
8
models collagen
8
geometrical features
8
predicting collagen
8
balancing cost
4
cost accuracy
4
accuracy quantum
4

Similar Publications

The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation.

View Article and Find Full Text PDF

Aberrant promoter methylation of CTHRC1 gene and its clinicopathological characteristics in head and neck cancer.

Int J Oral Maxillofac Surg

January 2025

Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. Electronic address:

Head and neck squamous cell carcinoma (HNSCC) is genetically complex and difficult to treat. Detection in the early stage is challenging, leading to diagnosis at advanced stages with limited treatment options. This study examined the collagen triple helix repeat containing 1 gene (CTHRC1) as a potential biomarker and therapeutic target in HNSCC.

View Article and Find Full Text PDF

A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods.

View Article and Find Full Text PDF

Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.

View Article and Find Full Text PDF

The study aimed to compare the effects of different types of excimer laser keratectomy on rabbit corneas and to identify the optimal disease model for corneal ectasia. Additionally, investigating the structural and molecular alterations in the novel disease model helped explore the mechanisms underlying biomechanical cues in corneal ectasia. 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!