Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Emotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods for identifying emotion in psychotherapy rely on labor-intensive observer ratings, client or therapist ratings obtained before or after sessions, or involve manually extracting ratings of emotion from session transcripts using dictionaries of positive and negative words that do not take the context of a sentence into account. However, recent advances in technology in the area of machine learning algorithms, in particular natural language processing, have made it possible for mental health researchers to identify sentiment, or emotion, in therapist-client interactions on a large scale that would be unattainable with more traditional methods. As an attempt to extend prior findings from Tanana et al. (2016), we compared their previous sentiment model with a common dictionary-based psychotherapy model, LIWC, and a new NLP model, BERT. We used the human ratings from a database of 97,497 utterances from psychotherapy to train the BERT model. Our findings revealed that the unigram sentiment model (kappa = 0.31) outperformed LIWC (kappa = 0.25), and ultimately BERT outperformed both models (kappa = 0.48).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8455714 | PMC |
http://dx.doi.org/10.3758/s13428-020-01531-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!