Hevin, also known as SPARC-like protein 1 (SPARCL1 or SC1), is a synaptogenic protein secreted by astrocytes and modulates the formation of glutamatergic synapses in the developing brain by interacting with synaptic adhesion proteins, such as neurexin and neuroligin. Here, we identified the neuron-specific vesicular protein calcyon as a novel interaction partner of hevin and demonstrated that this interaction played a pivotal role in synaptic reorganization after an injury in the mature brain. Astrocytic hevin was upregulated post-injury in a photothrombotic stroke model. Hevin was fragmented by MMP3 induced during the acute stage of brain injury, and this process was associated with severe gliosis. At the late stage, the functional hevin level was restored as MMP3 expression decreased. The C-terminus of hevin interacted with the N-terminus of calcyon. By using RNAi and binding competitor peptides in an ischemic brain injury model, we showed that this interaction was crucial in synaptic and functional recoveries in the sensory-motor cortex, based on histological and electrophysiological analyses. Regulated expression of hevin and calcyon and interaction between them were confirmed in a mouse model of traumatic brain injury and patients with chronic traumatic encephalopathy. Our study provides direct evidence for the causal relationship between the hevin-calcyon interaction and synaptic reorganization after brain injury. This neuron-glia interaction can be exploited to modulate synaptic reorganization under various neurological conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408247 | PMC |
http://dx.doi.org/10.1038/s41418-021-00772-5 | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK.
Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China.
Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA.
The long-term clinical outcomes and associated prognostic factors in contactin-associated protein-like 2 (CASPR2)-antibody diseases are unknown. A total of 75 participants with CASPR2 antibodies were longitudinally assessed for disability, quality-of-life, and chronic pain. Although most symptoms improved within 6 months of treatment, neuropathic pain and fatigue were the most immunotherapy refractory, and persisted for up to 6 years.
View Article and Find Full Text PDFFASEB J
January 2025
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!