Rapid evaluation of functions in densely assembled bacteria is a crucial issue in the efficient study of symbiotic mechanisms. If the interaction between many living microbes can be controlled and accelerated via remote assembly, a cultivation process requiring a few days can be ommitted, thus leading to a reduction in the time needed to analyze the bacterial functions. Here, we show the rapid, damage-free, and extremely dense light-induced assembly of microbes over a submillimeter area with the "bubble-mimetic substrate (BMS)". In particular, we successfully assembled 10-10 cells of lactic acid bacteria (Lactobacillus casei), achieving a survival rate higher than 95% within a few minutes without cultivation process. This type of light-induced assembly on substrates like BMS, with the maintenance of the inherent functions of various biological samples, can pave the way for the development of innovative methods for rapid and highly efficient analysis of functions in a variety of microbes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985151PMC
http://dx.doi.org/10.1038/s42003-021-01807-wDOI Listing

Publication Analysis

Top Keywords

light-induced assembly
12
cultivation process
8
damage-free light-induced
4
assembly
4
assembly intestinal
4
intestinal bacteria
4
bacteria bubble-mimetic
4
bubble-mimetic substrate
4
substrate rapid
4
rapid evaluation
4

Similar Publications

Single Nucleotide Polymorphism Highlighted via Heterogeneous Light-Induced Dissipative Structure.

ACS Sens

January 2025

Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka 599-8570, Japan.

The unique characteristics of biological structures depend on the behavior of DNA sequences confined in a microscale cell under environmental fluctuations and dissipation. Here, we report a prominent difference in fluorescence from dye-modified single-stranded DNA in a light-induced assembly of DNA-functionalized heterogeneous probe particles in a microwell of several microliters in volume. Strong optical forces from the Mie scattering of microparticles accelerated hybridization, and the photothermal effect from the localized surface plasmons in gold nanoparticles enhanced specificity to reduce the fluorescence intensity of dye-modified DNA to a few %, even in a one-base mismatched sequence, enabling us to clearly highlight the single nucleotide polymorphisms in DNA.

View Article and Find Full Text PDF

Freeze-Induced Protein Assembly of α-Synuclein into Stable Microspheres to Fabricate Light-Induced Cargo Release Systems.

ACS Appl Mater Interfaces

January 2025

School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.

Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization.

View Article and Find Full Text PDF

Photoswitchable Topological Regulation of Covalent Macrocycles, Molecular Recognition, and Interlocked Structures.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.

View Article and Find Full Text PDF
Article Synopsis
  • - Atomically precise metal nanoclusters (NCs) are interesting for their unique structures and catalytic potential, but they have issues like instability and self-aggregation.
  • - This research presents a method to stabilize metal NCs by anchoring them to a metal oxide matrix, creating a hollow core-shell structure through thermal treatment.
  • - The resulting metal NPs@metal oxide heterostructures show improved catalytic activity and stability for reducing aromatic nitro compounds, suggesting a new approach to utilize the instability of metal NCs in catalysis.
View Article and Find Full Text PDF

Stabilized Carbon Radical-Mediated Assembly of Arylthianthrenium Salts, Alkenes and Amino Acid/Peptide Derivatives.

Adv Sci (Weinh)

January 2025

National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.

Efficiently assembling amino acids and peptides with bioactive molecules facilitates the modular and streamlined synthesis of a diverse library of peptide-related compounds. Particularly notable is their application in pharmaceutical development, leveraging site-selective late-stage functionalization. Here, a visible light-induced three-component reaction involving arylthianthrenium salts, amino acid/peptide derivatives, and alkenes are introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!