AI Article Synopsis

  • The Accelerate Pheno and BacT/Alert Virtuo systems have shown potential to enhance the management of bacteremia in sepsis patients.
  • A study compared outcomes before and after implementing these systems, including metrics such as time to results and patient mortality.
  • Results indicated significantly shorter times for Gram stain and susceptibility results, improved antibiotic therapy initiation, and better sepsis resolution rates post-implementation, while hospital stay duration remained the same.

Article Abstract

The Accelerate Pheno and BacT/Alert Virtuo systems may improve bacteremia management. Here, we evaluated the impact of both devices on outcomes in patients with sepsis and concurrent Gram-negative bacteremia. This quasiexperimental study included a retrospective preimplementation and a prospective postimplementation group. Patients ≥18 years old with Gram-negative bacteremia were included. Patients with neutropenia, pregnant patients, those who were transferred from an outside hospital with active bloodstream infections, and those with polymicrobial bacteremia were excluded. Blood culture incubation in the BacT/Alert 3D device and microdilution antimicrobial susceptibility testing from culture plate growth were used prior to implementation of the BacT/Alert Virtuo and Accelerate Pheno systems. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) identification directly from blood culture was used pre- and postimplementation. Time to Gram stain results, identification, susceptibility reporting, initiation of narrow-spectrum Gram-negative therapy at 72 h, 30-day inpatient mortality, sepsis resolution, and length of hospital stay were evaluated. A total of 116 patients were included (63 preimplementation, 53 postimplementation). Median times to Gram stain and susceptibility results were significantly shorter postimplementation ( < 0.001). The postimplementation group had an improved hazard ratio for narrow-spectrum Gram-negative therapy at 72 h (hazard ratio [HR], 2.685 [95% confidence interval {CI}, 1.348 to 5.349]), a reduced hazard ratio for 30-day inpatient mortality (adjusted HR [aHR], 0.150 [95% CI, 0.026 to 0.846]), and improved sepsis resolution (92.5% versus 77.8% [ = 0.030]). The length of hospital stay was unchanged after implementation. We conclude that implementation of the BacT/Alert Virtuo and Accelerate Pheno systems improved microbiology laboratory processes, antibiotic utilization processes, and clinical outcomes. These data support the use of rapid diagnostics in sepsis with concurrent Gram-negative bacteremia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315910PMC
http://dx.doi.org/10.1128/AAC.02364-20DOI Listing

Publication Analysis

Top Keywords

accelerate pheno
12
bact/alert virtuo
12
gram-negative bacteremia
12
pheno bact/alert
8
outcomes patients
8
patients sepsis
8
sepsis concurrent
8
concurrent gram-negative
8
blood culture
8
gram stain
8

Similar Publications

Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.

View Article and Find Full Text PDF

Metabolic dysfunction-associated Steatohepatitis (MASH), is a prominent cause for liver cirrhosis. MASH-cirrhosis is responsible for liver complications and there is no specific treatment. To develop new therapeutic approaches, animal models are needed.

View Article and Find Full Text PDF

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Time to receive effective therapy is a primary determinant of mortality in patients with sepsis. Blood culture is the reference standard for the microbiological diagnosis of bloodstream infections, despite its low sensitivity and prolonged time to receive a pathogen detection.

View Article and Find Full Text PDF

Background: Biological age (BA) offers an effective assessment of true aging state. The progression of Osteoarthritis (OA) is closely associated with an increase in chronological age, the correlation between BA and OA has not been fully elucidated.

Methods: This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2005-2018.

View Article and Find Full Text PDF

DNA Methylation Age Mediates Effect of Metabolic Profile on Cardiovascular and General Aging.

Circ Res

October 2024

Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China (Y.M., C.Y., D.S., Y.P., L. Li, J.L.).

Background: Alterations in lipid metabolism and DNA methylation are 2 hallmarks of aging. Connecting metabolomic, epigenomic, and aging outcomes help unravel the complex mechanisms underlying aging. We aimed to assess whether DNA methylation clocks mediate the association of circulating metabolites with incident atherosclerotic cardiovascular disease (ASCVD) and frailty.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!