Micronuclei are constantly considered as a marker of genome instability and very recently found to be a trigger of innate immune responses. An increased frequency of micronuclei is associated with many diseases, but the mechanism underlying the regulation of micronuclei homeostasis remains largely unknown. Here, we report that CGAS (cyclic GMP-AMP synthase), a known regulator of DNA sensing and DNA repair, reduces the abundance of micronuclei under genotoxic stress in an autophagy-dependent manner. CGAS accumulates in the autophagic machinery and directly interacts with MAP1LC3B/LC3B in a manner dependent upon its MAP1LC3-interacting region (LIR). Importantly, the interaction is essential for MAP1LC3 recruitment to micronuclei and subsequent clearance of micronuclei via autophagy (micronucleophagy) in response to genotoxic stress. Moreover, in contrast to its DNA sensing function to activate micronuclei-driven inflammation, CGAS-mediated micronucleophagy blunts the production of cyclic GMP-AMP (cGAMP) induced by genotoxic stress. We therefore conclude that CGAS is a receptor for the selective autophagic clearance of micronuclei and uncovered an unprecedented role of CGAS in micronuclei homeostasis to dampen innate immune surveillance. ATG: autophagy-related; CGAS: cyclic GMP-AMP synthase; CQ: chloroquine; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; LIR, MAP1LC3-interacting region; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NDZ: nocodazole; STING1: stimulator of interferon response cGAMP interactor 1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8726603PMC
http://dx.doi.org/10.1080/15548627.2021.1899440DOI Listing

Publication Analysis

Top Keywords

clearance micronuclei
12
cyclic gmp-amp
12
genotoxic stress
12
micronuclei
9
innate immune
8
micronuclei homeostasis
8
cgas cyclic
8
gmp-amp synthase
8
dna sensing
8
map1lc3-interacting region
8

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) remains the most challenging human malignancy that urgently needs effective therapy. Tissue factor (TF) is expressed in ~80% of PDAC and represents a potential therapeutic target. While a novel TF-ADC (MRG004A) demonstrated efficacy for PDAC and TNBC in a Phase I/II trial [Ref.

View Article and Find Full Text PDF

ATR takes a crack at the nuclear envelope.

Mol Cell

October 2023

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.

In this issue, Joo et al. and Kovacs et al. report that the ATR kinase promotes nuclear envelope rupture through the phosphorylation of Lamin A/C, inducing processes such as cGAS-STING pathway activation, micronuclei clearance, and potentially cell death.

View Article and Find Full Text PDF

ATR promotes clearance of damaged DNA and damaged cells by rupturing micronuclei.

Mol Cell

October 2023

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, New Haven, CT 06516, USA. Electronic address:

The human ataxia telangiectasia mutated and Rad3-related (ATR) kinase functions in the nucleus to protect genomic integrity. Micronuclei (MN) arise from genomic and chromosomal instability and cause aneuploidy and chromothripsis, but how MN are removed is poorly understood. Here, we show that ATR is active in MN and promotes their rupture in S phase by phosphorylating Lamin A/C at Ser395, which primes Ser392 for CDK1 phosphorylation and destabilizes the MN envelope.

View Article and Find Full Text PDF

Double-checking chromosome segregation.

J Cell Biol

May 2023

Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal.

Enduring chromosome segregation errors represent potential threats to genomic stability due to eventual chromosome copy number alterations (aneuploidy) and formation of micronuclei-key intermediates of a rapid mutational process known as chromothripsis that is found in cancer and congenital disorders. The spindle assembly checkpoint (SAC) has been viewed as the sole surveillance mechanism that prevents chromosome segregation errors during mitosis and meiosis. However, different types of chromosome segregation errors stemming from incorrect kinetochore-microtubule attachments satisfy the SAC and are more frequent than previously anticipated.

View Article and Find Full Text PDF

Nucleophagy contributes to genome stability through degradation of type II topoisomerases A and B and nucleolar components.

J Cell Sci

January 2023

Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México.

The nuclear architecture of mammalian cells can be altered as a consequence of anomalous accumulation of nuclear proteins or genomic alterations. Most of the knowledge about nuclear dynamics comes from studies on cancerous cells. How normal healthy cells maintain genome stability, avoiding accumulation of nuclear damaged material, is less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!