Quantum-classical nonadiabatic dynamics of Floquet driven systems.

J Chem Phys

Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France.

Published: March 2021

We develop a trajectory-based approach for excited-state molecular dynamics simulations of systems subject to an external periodic drive. We combine the exact-factorization formalism, allowing us to treat electron-nuclear systems in nonadiabatic regimes, with the Floquet formalism for time-periodic processes. The theory is developed starting with the molecular time-dependent Schrödinger equation with the inclusion of an external periodic drive that couples to the system dipole moment. With the support of the Floquet formalism, quantum dynamics is approximated by combining classical-like, trajectory-based, nuclear evolution with electronic dynamics represented in the Floquet basis. The resulting algorithm, which is an extension of the coupled-trajectory mixed quantum-classical scheme for periodically driven systems, is applied to a model study, exactly solvable, with different field intensities.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0043790DOI Listing

Publication Analysis

Top Keywords

driven systems
8
external periodic
8
periodic drive
8
floquet formalism
8
quantum-classical nonadiabatic
4
dynamics
4
nonadiabatic dynamics
4
floquet
4
dynamics floquet
4
floquet driven
4

Similar Publications

We investigate the experimental control of pair tunneling in a double-well potential using Floquet engineering. We demonstrate a crossover from a regime with density-assisted tunneling to dominant pair tunneling by tuning the effective interactions. Furthermore, we show that the pair tunneling rate can be enhanced not only compared to the Floquet-reduced single-particle tunneling but even beyond the static superexchange rate, while keeping the effective interaction in a relevant range.

View Article and Find Full Text PDF

Objectives: To examine factors impacting diagnostic evaluation of suspected deep vein thrombosis (DVT) by analyzing the test ordering patterns and provider decision-making within a universal health coverage system in Hungary.

Methods: We analyzed test orders for suspected DVT between 2007 and 2020, and the financial framework influencing diagnostic practices. An anonymous survey was also conducted among Emergency Department physicians to explore factors influencing diagnostic decision-making.

View Article and Find Full Text PDF

Background: Mental health chatbots have emerged as a promising tool for providing accessible and convenient support to individuals in need. Building on our previous research on digital interventions for loneliness and depression among Korean college students, this study addresses the limitations identified and explores more advanced artificial intelligence-driven solutions.

Objective: This study aimed to develop and evaluate the performance of HoMemeTown Dr.

View Article and Find Full Text PDF

Mechanistic Investigation of the Ce(III) Chloride Photoredox Catalysis System: Understanding the Role of Alcohols as Additives.

J Am Chem Soc

January 2025

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States.

Photocatalytic C-H activation is an emerging area of research. While cerium chloride photocatalysts have been extensively studied, the role of alcohol additives in these systems remains a subject of ongoing discussion. It was demonstrated that the photocatalyst [NEt][CeCl] () produces •Cl and added alcohols exhibit zero-order kinetics.

View Article and Find Full Text PDF

Individual differences elucidate the perceptual benefits associated with robust temporal fine-structure processing.

Proc Natl Acad Sci U S A

January 2025

Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15213.

The auditory system is unique among sensory systems in its ability to phase lock to and precisely follow very fast cycle-by-cycle fluctuations in the phase of sound-driven cochlear vibrations. Yet, the perceptual role of this temporal fine structure (TFS) code is debated. This fundamental gap is attributable to our inability to experimentally manipulate TFS cues without altering other perceptually relevant cues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!