Time-resolved studies have so far relied on rapidly triggering a photo-induced dynamic in chemical or biological ions or molecules and subsequently probing them with a beam of fast moving photons or electrons that crosses the studied samples in a short period of time. Hence, the time resolution of the signal is mainly set by the pulse duration of the pump and probe pulses. In this paper, we propose a different approach to this problem that has the potential to consistently achieve orders of magnitude higher time resolutions than what is possible with laser technology or electron beam compression methods. Our proposed approach relies on accelerating the sample to a high speed to achieve relativistic time dilation. Probing the time-dilated sample would open up previously inaccessible time resolution domains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0037862 | DOI Listing |
J Comput Chem
January 2025
Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, Brazil.
Seventeen electronic states of the dication VH were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V + H channel are thermodynamic stable.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland.
We performed the first simulations of accretion onto the compact objects in the Reissner-Nordström (RN) space-time. The results obtained in general relativity are representative of those for spherically symmetric naked singularities and black holes in a number of modified gravity theories. A possible application of these calculations is to the active galactic nuclei with their powerful jets and outflows.
View Article and Find Full Text PDFWe report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
University of Califonia, Los Angeles, Department of Physics & Astronomy, Los Angeles, Califonia 90095-1547, USA.
Phys Rev Lett
November 2024
Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!