We investigate the solvation structure of flat and stepped MgO(001) in neutral liquid water using ab initio molecular dynamics based on a hybrid density functional with dispersion corrections. Our simulations show that the MgO surface is covered by a densely packed layer of mixed intact and dissociated adsorbed water molecules in a planar arrangement with strong intermolecular H-bonds. The water dissociation fractions in this layer are >20% and >30% on the flat and stepped surfaces, respectively. Slightly above the first water layer, we observe metastable OH groups perpendicular to the interface, similar to those reported in low temperature studies of water monolayers on MgO. These species receive hydrogen bonds from four nearby water molecules in the first layer and have their hydrophobic H end directed toward bulk water, while their associated protons are bound to surface oxygens. The formation of these OH species is attributed to the strong basicity of the MgO surface and can be relevant for understanding various phenomena from morphology evolution and growth of (nano)crystalline MgO particles to heterogeneous catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0044700 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
Since water is both a product and a common reactant impurity in the (partial) methanol oxidation to methyl formate (MeFo) on gold, its effect on the isothermal selectivity to methyl formate was investigated under well-defined single-collision conditions employing pulsed molecular beam experiments and in situ IRAS measurements. Both a flat Au(111) and a stepped Au(332) surface were used as model catalysts to elucidate how water affects the reactivity of low-coordinated step sites as compared to (111) terrace sites employing a range of reaction conditions. The interactions of water with methanol/methoxy as well as with oxygen species are addressed.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
To ensure the safe extraction of deep mineral resources, it is imperative to address the mechanical properties and damage mechanism of coal and rock media under the real-time coupling effect of high temperature and impact. In this study, the impact tests (impact velocities of 6.0-10.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China.
This article introduces a novel perspective on designing a stepping controller for bipedal robots. Typically, designing a state-feedback controller to stabilize a bipedal robot to a periodic orbit of step-to-step (S2S) dynamics based on a reduced-order model (ROM) can achieve stable walking. However, the model discrepancies between the ROM and the full-order dynamic system are often ignored.
View Article and Find Full Text PDFSci Rep
November 2024
Electrical Engineering Department, Lorestan University, Khorramabad, 68151-44316, Iran.
A compact simple structure bandpass filter based on terminated three coupled line structures with high selectivity is introduced through odd and even-mode analysis. The proposed filter consists of three coupled lines loaded by open and short circuit stubs. The parallel-coupled lines structure is used to obtain high selectivity with transmission zeros near the passband.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2024
Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
To elucidate the role of low-coordinated sites in the partial methanol oxidation to methyl formate (MeFo), the isothermal reactivity of flat Au(111) and stepped Au(332) in pulsed molecular beam experiments was compared for a broad range of reaction conditions. Low-coordinated step sites were found to enhance MeFo selectivity, especially at low coverage conditions, as found at higher temperatures. The analysis of the transient kinetics provides evidence for the essential role of Au O phases for MeFo formation and the complex interplay of different oxygen species for the observed selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!