Background: Over the past few decades, various goals have been defined to reduce the mortality of children caused by acute lower respiratory infections (ALRIs) worldwide. However, few spatial studies to date have reported on ALRI deaths.
Purpose: We aimed to assess the spatial modeling of mortality from ALRI in children under 5 years of age during 2000-2017 using a global data.
Methods: The data on the mortality of children under 5 years old caused by ALRI were initially obtained from the official website of the World Health Organization. The income status of their home countries was also gathered from the Country Income Groups (World Bank Classification) website and divided into 5 categories. After that, in the ArcGIS 10.6 environment, a database was created and the statistical tests and related maps were extracted. The Global Moran's I statistic, Getis-Ord Gi statistic, and geographically weighted regression were used for the analyses. In this study, higher z scores indicated the hot spots, while lower z scores indicated the cold spots.
Results: In 2000-2017, child mortality showed a downward trend from 17.6 per 100,000 children to 8.1 and had a clustered pattern. Hot spots were concentrated in Asia in 2000 but shifted toward African countries by 2017. A cold spot that formed in Europe in 2007 showed an ascending trend by 2017. Based on the results of geographically weighted regression test, the regions identified as the hot spots of mortality from ALRI in children under 5 years old were among the middle-income countries (R2=0.01, adjusted R2=8.77).
Conclusion: While the total number of child deaths in 2000-2017 has decreased, the number of hot spots has increased among countries. This study also concluded that, during the study period, Central and Western Africa countries became the main new hot spots of deaths from ALRI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650821 | PMC |
http://dx.doi.org/10.3345/cep.2020.01438 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Facultad de Ciencias, Sección Limnología, IECA, Universidad de la República, Montevideo, Uruguay.
The biochemical composition of sediments, which depends on the origin of the organic matter (OM), is decisive in methane (CH) production. This study aimed to determine the CH produced under anaerobic conditions from different substrates: native reservoir sediments and sediments with the addition of complex OM from Microcystis spp. blooms and terrestrial plants (pasture), alongside the biochemical characterization of the substrates used.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.
Hyperbolic metamaterials (HMMs) have recently attracted significant research attention due to their hyperbolic wavevector iso-frequency contour, which leads to substantial local electric field (EF) enhancements that benefit optical processes, such as the nonlinear generation, quantum science, biomedical sensing, and more. However, three main challenges hinder their practical implementation: the difficulty in exciting their resonant modes using free-space incidence, the weak enhancement of surface EF, and the narrow spectral range of EF enhancements. Herein, we proposed cross-etched HMMs (CeHMMs) as a novel type of HMM, addressing these issues.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.
Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China. Electronic address:
Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).
View Article and Find Full Text PDFCancers (Basel)
January 2025
Program in Public Health, Stony Brook Medicine, Stony Brook, NY 11794, USA.
Introduction: Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States (U.S.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!