A pocket-sized device automates multiplexed point-of-care RNA testing for rapid screening of infectious pathogens.

Biosens Bioelectron

Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of Laboratory Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China; Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou, 510180, China; Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou, 510180, China. Electronic address:

Published: June 2021

Rapid screening of infectious pathogens at the point-of-care (POC) is ideally low-cost, portable, easy to use, and capable of multiplex detection with high sensitivity. However, satisfying all these features in a single device without compromise remains a challenging task. Here, we introduce an ultraportable, automated RNA amplification testing device that allows rapid screening of infectious pathogens from clinical samples. In this device, 3D-printed structural parts incorporated with off-the-shelf mechanic/electronic components are utilized to create an inexpensive and automated droplet manipulation platform. On this platform, a simple configuration that couples a linear displacement of the chip with a tunable magnet array allows parallel and versatile droplet operations, including mixing, splitting, transporting, and merging. By exploiting a multi-channel droplet array chip to preload necessary reagents in "water-in-oil" format, bacteria lysis, RNA extraction and amplification are seamlessly integrated and implemented by the combination of droplet operations. Furthermore, visual readout and geometrically-multiplexed quantitative detection are provided by an integrated wireless video camera-enabled wide-field fluorescence imaging. We demonstrated that this droplet-based device could have a shorter RNA extraction time (12 min) and lower detection limits for pathogenic RNA (approaching to 10 copies per reaction). We also verified its clinical applicability for the rapid screening of four sexually transmitted pathogens from urine specimens. Results show that the sample-to-answer assay could be completed in approximately 42 min, with 100% concordance with the laboratory-based molecular testing. The exhibiting features may render this microdevice an easily accessible POC molecular diagnostic platform for infectious disease, especially in resource-limited settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113145DOI Listing

Publication Analysis

Top Keywords

rapid screening
16
screening infectious
12
infectious pathogens
12
droplet operations
8
rna extraction
8
rna
5
pocket-sized device
4
device automates
4
automates multiplexed
4
multiplexed point-of-care
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!