A bis(squaraine) dye equipped with alkyl and oligoethyleneglycol chains was synthesized by connecting two dicyanomethylene substituted squaraine dyes with a phenylene spacer unit. The aggregation behavior of this bis(squaraine) was investigated in non-polar toluene/tetrachloroethane (98:2) solvent mixture, which revealed competing cooperative self-assembly pathways into two supramolecular polymorphs with entirely different packing structures and UV/Vis/NIR absorption properties. The self-assembly pathway can be controlled by the cooling rate from a heated solution of the monomers. For both polymorphs, quasi-equilibrium conditions between monomers and the respective aggregates can be established to derive thermodynamic parameters and insights into the self-assembly mechanisms. AFM measurements revealed a nanosheet structure with a height of 2 nm for the thermodynamically more stable polymorph and a tubular nanorod structure with a helical pitch of 13 nm and a diameter of 5 nm for the kinetically favored polymorph. Together with wide angle X-ray scattering measurements, packing models were derived: the thermodynamic polymorph consists of brick-work type nanosheets that exhibit red-shifted absorption bands as typical for J-aggregates, while the nanorod polymorph consists of eight supramolecular polymer strands of the bis(squaraine) intertwined to form a chimney-type tubular structure. The absorption of this aggregate covers a large spectral range from 550 to 875 nm, which cannot be rationalized by the conventional exciton theory. By applying the Essential States Model and considering intermolecular charge transfer, the aggregate spectrum was adequately reproduced, revealing that the broad absorption spectrum is due to pronounced donor-acceptor overlap within the bis(squaraine) nanorods. The latter is also responsible for the pronounced bathochromic shift observed for the nanosheet structure as a result of the slip-stacked arranged squaraine chromophores.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252746PMC
http://dx.doi.org/10.1002/anie.202102183DOI Listing

Publication Analysis

Top Keywords

self-assembly pathway
8
nanosheet structure
8
polymorph consists
8
polymorphism squaraine
4
squaraine dye
4
dye aggregates
4
self-assembly
4
aggregates self-assembly
4
pathway differentiation
4
differentiation panchromatic
4

Similar Publications

Recent years have witnessed the rapid growth of combination therapy for the treatment of cancer. Chemo and antisense DNA therapies are two clinically proven and efficient treatment modalities for cancer. However, direct delivery of both chemo and antisense oligonucleotides into the cancerous cells is challenging and hence there is a high demand for the development of new strategies that permit the direct delivery of chemo and antisense therapeutic agents in a targeted fashion.

View Article and Find Full Text PDF

Models and simulations of structural DNA nanotechnology reveal fundamental principles of self-assembly.

Chem Soc Rev

January 2025

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

DNA is not only a centrally important molecule in biology: the specificity of bonding that allows it to be the primary information storage medium for life has also allowed it to become one of the most promising materials for designing intricate, self-assembling structures at the nanoscale. While the applications of these structures are both broad and highly promising, the self-assembly process itself has attracted interest not only for the practical applications of designing structures with more efficient assembly pathways, but also due to a desire to understand the principles underlying self-assembling systems more generally, of which DNA-based systems provide intriguing and unique examples. Here, we review the fundamental physical principles that underpin the self-assembly process in the field of DNA nanotechnology, with a specific focus on simulation and modelling and what we can learn from them.

View Article and Find Full Text PDF

Dynamic control of DNA circuit functionality is essential for constructing chemical reaction networks (CRNs) that implement complex functions. The triplex has been utilized for dynamically regulating the diverse functionalities of DNA circuits due to its distinctive pH responsiveness. However, it is challenging for triplexes to independently regulate the functionality of DNA circuits, as various triplexes were often required for DNA circuits to function in complex environments, which adds complexity to the design and control of dynamic circuits.

View Article and Find Full Text PDF

Partially Bonded Crystals: A Pathway to Porosity and Polymorphism.

ACS Nano

January 2025

Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.

In recent years, experimental and theoretical investigations have shown that anisotropic colloids can self-organize into ordered porous monolayers, where the interplay of localized bonding sites, so-called patches, with the particle's shape is responsible for driving the systems away from close-packing and toward porosity. Until now it has been assumed that patchy particles have to be fully bonded with their neighboring particles for crystals to form, and that, if full bonding cannot be achieved due to the choice of patch placement, disordered assemblies will form instead. In contrast, we show that by deliberately displacing the patches such that full bonding is disfavored, a different route to porous crystalline monolayers emerges, where geometric frustration and partial bonding are decisive process.

View Article and Find Full Text PDF

Chemically Triggered Reactive Coacervates Show Life-Like Budding and Membrane Formation.

J Am Chem Soc

January 2025

Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló de la Plana 12071, Spain.

Phase-separated coacervates can enhance reaction kinetics and guide multilevel self-assembly, mimicking early cellular evolution. In this work, we introduce "reactive" complex coacervates that undergo chemically triggered self-immolative transformations, directing the self-assembly of the reaction products within their matrix. These self-assemblies then evolve to show life-like properties such as budding and membrane formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!