Climate change negatively impacts the global hydrological resources leading to detrimental flood events. Submergence impedes the cellular membrane integrity, consequently affecting the membrane fluidity. Different abiotic stresses influence membrane lipid composition. Therefore, the remodeling of membrane lipids plays a major role in stress adaptation. Submergence-induced membrane lipid peroxidation is well established in plants. However, dynamic changes in lipid composition for regulating submergence tolerance in rice remain so far unexplored. The present study explored the effect of submergence on the lipidomic profile of the Sub1 near-isogenic lines (NILs) of rice, viz. Swarna, and Swarna Sub1 with contrasting submergence tolerance. The study also examined the association of lipidomic alteration with the membrane integrity and submergence tolerance. Submergence caused increased accumulation of reactive oxygen species (ROS), which was significantly higher in Swarna than Swarna Sub1. The lipid profile was also considerably altered under submergence. Following submergence, Swarna exhibited a significant decrease in phospholipid content accompanied by increased lipid peroxidation and electrolyte leakage. Furthermore, the disintegration of the thylakoid membrane resulted in a significant decrease in the chlorophyll content and photosynthesis rate under submergence. Submergence-induced hypoxic condition also promoted starch depletion to fulfill the energy requirement. In contrast, submergence acclimation in Swarna Sub1 was associated with the shift to anaerobic respiration mediated by increased alcohol dehydrogenase (ADH) activity. Effective ROS detoxification in Swarna Sub1 facilitated by increased antioxidant enzyme activities contributed to the submergence tolerance by maintaining membrane integrity and photosynthetic activity. The present study established the direct association of lipid remodeling with membrane integrity, cell viability, and photosynthesis and also devised a crop model to reveal the molecular background of submergence tolerance in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!