Flavocytochrome b (EC 1.1.2.3; L-lactate cytochrome: c oxidoreductase, FC b) from the thermotolerant methylotrophic yeast Ogataea polymorpha is a thermostable enzyme-prospective for a highly selective L-lactate analysis in the medicine, nutrition sector, and quality control of commercial products. Here we describe the construction of FC b producers by overexpression of the CYB2 gene O. polymorpha, encoding FC b, under the control of a strong alcohol oxidase promoter in the frame of plasmid for multicopy integration with the next transformation of recipient strain O. polymorpha C-105 (gcr1 catX) impaired in the glucose repression and devoid of catalase activity. The selected recombinant strain O. polymorpha "tr1" (gcr1 catX CYB2), characterized by eightfold increased FC b activity compared to the initial strain, was used as a source of the enzyme. For purification of FC b a new method of affinity chromatography was developed and purified preparations of the enzyme were used for the construction of the highly selective enzymatic kits and amperometric biosensor for L-lactate analysis in human liquids and foods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1286-6_16DOI Listing

Publication Analysis

Top Keywords

methylotrophic yeast
8
yeast ogataea
8
ogataea polymorpha
8
highly selective
8
l-lactate analysis
8
strain polymorpha
8
gcr1 catx
8
polymorpha
5
flavocytochrome methylotrophic
4
polymorpha construction
4

Similar Publications

Flavin adenine nucleotide (FAD)-dependent oxidoreductase enzyme Alcohol oxidase (AOX) facilitates the growth of methylotrophic yeast C. boidinii by catabolizing methanol, producing formaldehyde and hydrogen peroxide. Vacuolar Protease-A (PrA) from C.

View Article and Find Full Text PDF

Cells of the methylotrophic yeast Ogataea parapolymorpha have two genes encoding low-affinity phosphate transporters: PHO87, encoding the plasma membrane transporter, and PHO91, encoding a protein, which is homologous to the Saccharomyces cerevisiae vacuolar membrane transporter. Earlier, we reported that inactivation of PHO91 in O. parapolymorpha interferes with methanol utilization due to the lack of activity of methanol oxidase encoded by the MOX gene.

View Article and Find Full Text PDF

Background: Currently, efficient technologies producing useful chemicals from alternative carbon resources, such as methanol, to replace petroleum are in demand. The methanol-utilizing yeast, Komagataella phaffii, is a promising microorganism to produce chemicals from methanol using environment-friendly microbial processes. In this study, to achieve efficient D-lactic acid production from methanol, we investigated a combination of D-lactate dehydrogenase (D-LDH) genes and promoters in K.

View Article and Find Full Text PDF

Evolutionary engineering of : Crafting a synthetic methylotroph via self-reprogramming.

Sci Adv

December 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.

Methanol, as a non-edible feedstock, offers a promising sustainable alternative to sugar-based substrates in biochemical production. Despite progress in engineering methanol assimilation in nonmethylotrophs, the full transformation into methanol-dependent synthetic methylotrophs remains a formidable challenge. Here, moving beyond the conventional rational design principle, we engineered a synthetic methylotrophic through genome rearrangement and adaptive laboratory evolution.

View Article and Find Full Text PDF

Development of a protein production system using Ogataea minuta alcohol oxidase-deficient strain under reduced-methanol-consumption conditions.

Biosci Biotechnol Biochem

December 2024

Technology Innovation Strategy and Intelligence, Daiichi Sankyo Co., Ltd., Chiyoda, Gunma, Japan.

Methylotrophic yeast is a useful host for producing heterologous proteins using the unique and strong alcohol oxidase 1 (AOX1) promoter, which is induced by methanol and repressed by various carbon sources. However, methanol is preferably avoided in industrial-scale fermentation given its toxicity, flammability, and explosiveness. To develop a protein production system under reduced methanol supply conditions, we attempted to characterize the AOX1 promoter induction activity by comparing derepression conditions with methanol induction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!