Aims: Cardiac dyssynchrony in patients with repaired Tetralogy of Fallot (rToF) has been attributed to right bundle branch block (RBBB), fibrosis and/or the patches that are inserted during repair surgery. We aimed to investigate the basis of abnormal activation in rToF patients by mapping the electrical activation sequence during sinus rhythm (SR) and right ventricular (RV) pacing.

Methods And Results: A total of 17 patients were studied [13 with rToF, 2 with left bundle branch block (LBBB), and 2 without RBBB or LBBB (non-BBB)] during medically indicated cardiac surgery. During SR and RV pacing, measurements were performed using 112-electrode RV endocardial balloons (rToF only) and biventricular epicardial sock arrays (four of the rToF and all non-rToF patients). During SR, functional lines of block occurred in five rToF patients, while RV pacing caused functional blocks in four rToF patients. The line of block persisted during both SR and RV pacing in only 2 out of 13 rToF patients. Compared to SR, RV pacing increased dispersion of septal activation, but not dispersion of endocardial and epicardial activation of the RV free wall. During pacing, RV and left ventricular activation dispersion in rToF patients were comparable to that of the non-rToF patients.

Conclusion: The results of the present study indicate that the delayed activation in the right ventricle of rToF patients is predominantly due to block(s) in the Purkinje system and that conduction in RV tissue is fairly normal.

Download full-text PDF

Source
http://dx.doi.org/10.1093/europace/euaa400DOI Listing

Publication Analysis

Top Keywords

rtof patients
24
patients
10
rtof
10
patients repaired
8
repaired tetralogy
8
tetralogy fallot
8
bundle branch
8
branch block
8
activation dispersion
8
activation
6

Similar Publications

Background: In adolescents and adults with tetralogy of Fallot (TOF), right ventricle (RV) electromechanical dyssynchrony (EMD) due to right bundle branch block (RBBB) is associated with reduced exercise capacity and RV dysfunction. While the development of RBBB following surgical repair of tetralogy of Fallot (rTOF) is a frequent sequela, it is not known whether EMD is present in every patient immediately following rTOF. The specific timing of the onset of RBBB following rTOF therefore provides an opportunity to assess whether acute RBBB is associated with the simultaneous acquisition of EMD.

View Article and Find Full Text PDF

Background: Ventricular tachycardia (VT) substrate characteristics before transcatheter pulmonary valve replacement (TPVR) in repaired tetralogy of Fallot (rTOF) are unknown.

Objectives: In this study, the authors sought to evaluate substrates for sustained monomorphic VT before TPVR in rTOF.

Methods: Retrospective (2017 to 2021) and prospective (commencing 2021) rTOF patients with native right ventricular outflow tract referred for electrophysiology study (EPS) before TPVR were included.

View Article and Find Full Text PDF

Background: Right ventricular restrictive physiology (RVRP) is a common occurrence in repaired tetralogy of Fallot (rTOF). The relationship of RVRP with biventricular blood flow components and kinetic energy (KE) from 4-dimensional (4D) flow cardiovascular magnetic resonance (CMR) is unclear.

Objectives: The purpose of this study was to investigate the association of 4D flow CMR parameters with RVRP in rTOF patients.

View Article and Find Full Text PDF

Background: Surgically repaired Tetralogy of Fallot (rTOF) is associated with progressive right ventricular hypertrophy (RVH) and dilation (RVD). Accurate estimation of RVH/RVD is vital for the ongoing management of this patient population. The utility of the ECG in evaluating patients with rTOF with pre-existing right bundle branch block (RBBB) has not been studied.

View Article and Find Full Text PDF

Phenotypic clustering of repaired Tetralogy of Fallot using unsupervised machine learning.

Int J Cardiol Congenit Heart Dis

September 2024

The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, 600 N. Wolfe Street, 1389 Blalock, Baltimore, 21287, MD, USA.

Objective: Repaired Tetralogy of Fallot (rTOF), a complex congenital heart disease, exhibits substantial clinical heterogeneity. Accurate prediction of disease progression and tailored patient management remain elusive. We aimed to categorize rTOF patients into distinct phenotypes based on clinical variables and variables obtained from cardiac magnetic resonance (CMR) imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!