A biomarker for vascular calcification: shedding light on an unfinished story?

Cardiovasc Res

Department of Medicine, University of California-Los Angeles, 650 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.

Published: July 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262638PMC
http://dx.doi.org/10.1093/cvr/cvab071DOI Listing

Publication Analysis

Top Keywords

biomarker vascular
4
vascular calcification
4
calcification shedding
4
shedding light
4
light unfinished
4
unfinished story?
4
biomarker
1
calcification
1
shedding
1
light
1

Similar Publications

Depression-related innate immune genes and pan-cancer gene analysis and validation.

Front Genet

January 2025

Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Collaborative Innovation Center of Hebei Province for Mechanism, Diagnosis and Treatment of Neuropsychiatric Diseases, Hebei Medical University, Shijiazhuang, Hebei, China.

Background: Depression, a prevalent chronic mental disorder, presents complexities and treatment challenges that drive researchers to seek new, precise therapeutic targets. Additionally, the potential connection between depression and cancer has garnered significant attention.

Methods: This study analyzed depression-related gene expression data from the GEO database.

View Article and Find Full Text PDF

iRGD-Targeted Biosynthetic Nanobubbles for Ultrasound Molecular Imaging of Osteosarcoma.

Int J Nanomedicine

January 2025

Department of Ultrasound, The second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People's Republic of China.

Purpose: Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells.

View Article and Find Full Text PDF

Background: Hypertension-mediated organ damage (HMOD) is a critical complication of hypertension that can present with cardiac, retinal, and renal manifestations and affect patient outcomes. Serum signal peptide, CUB (complement C1r/C1s, Uegf, and Bmp1) domain, and epidermal growth factor-like domain-containing protein 1 (SCUBE-1), a novel biomarker implicated in vascular pathology, shows promise for detecting HMOD. This study aims to explore the relation between SCUBE-1 levels and HMOD in hypertensive patients.

View Article and Find Full Text PDF

Matrix-bound vesicles (MBVs), an integral part of the extracellular matrix (ECM), are emerging as pivotal factors in ECM-driven molecular signaling. This study is the first to report the isolation of MBVs from porcine arterial endothelial cell basement membranes (A-MBVs) and thyroid cartilage (C-MBVs), the latter serving as a negative control due to its minimal vascular characteristics. Using Transmission Electron Microscopy (TEM), Nano-Tracking Analysis (NTA), Electrochemical Impedance Spectroscopy (EIS), and Atomic Force Microscopy (AFM), we orthogonally characterized the isolated MBVs.

View Article and Find Full Text PDF

Purpose: Retinopathy of prematurity (ROP) stage is defined by the visual appearance of the vascular-avascular border, which reflects a spectrum of pathologic neurovascular tissue (NVT). Previous work demonstrated that the thickness of the ridge lesion, measured using OCT, corresponds to higher clinical diagnosis of stage. This study evaluates whether the volume of anomalous NVT (ANVTV), defined as abnormal tissue protruding from the regular contour of the retina, can be measured automatically using deep learning to develop quantitative OCT-based biomarkers in ROP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!