The construction of graphene-based microfibers with reinforced mechanical and electrical properties has been the subject of numerous researches in recent years. However, the fabrication of graphene-based fibers with remarkable optical features still remains a challenge and has not been addressed so far. This paper aims to report a series of flexible self-assembled fibers, synthesized through a few-minute sonication of thermally oxidized graphene oxide nanosheets, so-called Nanoporous Over-Oxidized Graphene (NOG), in an acidic medium. These free-standing glassy fibers were classified into four distinct morphological structures and displayed a collection of intriguing optical properties comprising high transparency, strong birefringence, fixed body colorations (e.g. colorless, blue, green, and red), tunable interference marginal colorations, UV-visible-near IR fluorescence, and upconversion emissions. Moreover, they exhibited high chemical stability in strongly acidic, basic, and oxidizing media. The foregoing notable attributes introduce the NOG fiber as a promising candidate both for the construction of graphene-based photoluminescent textiles and the development of a wide variety of optical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943562PMC
http://dx.doi.org/10.1038/s41598-021-84940-0DOI Listing

Publication Analysis

Top Keywords

graphene-based microfibers
8
optical properties
8
construction graphene-based
8
self-assembled graphene-based
4
microfibers eclectic
4
optical
4
eclectic optical
4
properties construction
4
microfibers reinforced
4
reinforced mechanical
4

Similar Publications

Enhanced Nonradiative Charge Recombination in Microfiber-Based Bismuthene.

Nano Lett

May 2024

School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao 266237, China.

After the first report of a graphene-based passive mode-locking ultrafast fiber laser, two-dimensional materials as efficient saturable absorbers offer a new horizon in ultrafast fiber laser. However, the interactions on atomic scale between these two-dimensional materials and fiber and the fiber effect on the carrier dynamics have not been realized. To figure out the exact role of fiber and the carrier dynamics affected by the fiber substrate related to ultrafast photonics, bismuthene, a newly reported 2D quantum material used in a passive mode-locking fiber laser, deposited on α-quartz has been investigated.

View Article and Find Full Text PDF

Graphene composite paper synergized with micro/nanocellulose-fiber and silk fibroin for flexible strain sensor.

Int J Biol Macromol

June 2023

Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China. Electronic address:

The fabrication of uniform and strong graphene-based conductive paper is challenging due to easy aggregation and poor film formability of graphene. Herein, on the basis of good dispersing effect of nanocellulose, high content graphene (50 wt%) composite paper with micro/nanocellulose fibers and silk fibroin (SF) was manufactured via simple casting method. The synergistic effects of cellulose microfibers (CMFs), cellulose nanofibers (CNFs) and SF result in the paper with ideal combination of flexibility, electrical conductivity and mechanical strength, where CNFs, CMFs and SF act as dispersing and film forming for GNPs, dimensional stability, and interfacial binding agents, respectively.

View Article and Find Full Text PDF

The current global pandemic of new coronary pneumonia clearly reveals the importance of developing highly efficient filtration and fast germicidal performance of multifunctional air filters. In this study, a novel air filter with a controllable morphology based on the rod-like to flower-like zinc oxide/graphene-based photocatalytic composite particles loaded on glass microfiber was prepared by one-step microwave rapid synthesis. The multifunctional air filter shows the following special functions: the 10 mg·L organic pollutant solution RhB was completely degraded within 2 h under a 500 W xenon lamp, and also 99% of and were inactivated under a 60 W light-emitting diode lamp.

View Article and Find Full Text PDF

All-optical graphene-based optical modulators have recently attracted much attention because of their ultrafast and broadband response characteristics (bandwidth larger than 100 GHz) in comparison with the previous graphene-based optical modulators, which are electrically tuned via the graphene Fermi level. Silicon photonics has some benefits such as low cost and high compatibility with CMOS design and manufacturing technology. On the other hand, graphene has a unique large nonlinear Kerr coefficient, which we calculate using graphene's tight-binding model based on the semiconductor Bloch equations.

View Article and Find Full Text PDF

The construction of graphene-based microfibers with reinforced mechanical and electrical properties has been the subject of numerous researches in recent years. However, the fabrication of graphene-based fibers with remarkable optical features still remains a challenge and has not been addressed so far. This paper aims to report a series of flexible self-assembled fibers, synthesized through a few-minute sonication of thermally oxidized graphene oxide nanosheets, so-called Nanoporous Over-Oxidized Graphene (NOG), in an acidic medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!