A novel cytogenetic method to image chromatin interactions at subkilobase resolution: Tn5 transposase-based fluorescence in situ hybridization.

J Genet Genomics

Department of Automation, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China. Electronic address:

Published: December 2020

There is an increasing interest in understanding how three-dimensional organization of the genome is regulated. Different strategies have been used to identify genome-wide chromatin interactions. However, owing to current limitations in resolving genomic contacts, visualization and validation of these genomic loci at subkilobase resolution remain unsolved to date. Here, we describe Tn5 transposase-based fluorescence in situ hybridization (Tn5-FISH), a polymerase chain reaction-based, cost-effective imaging method, which can colocalize the genomic loci at subkilobase resolution, dissect genome architecture, and verify chromatin interactions detected by chromatin configuration capture-derived methods. To validate this method, short-range interactions in the keratin-encoding gene (KRT) locus in the topologically associated domain were imaged by triple-color Tn5-FISH, indicating that Tn5-FISH is very useful to verify short-range chromatin interactions inside the contact domain and TAD. Therefore, Tn5-FISH can be a powerful molecular tool for clinical detection of cytogenetic changes in numerous genetic diseases such as cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgg.2020.04.008DOI Listing

Publication Analysis

Top Keywords

chromatin interactions
16
subkilobase resolution
12
tn5 transposase-based
8
transposase-based fluorescence
8
fluorescence situ
8
situ hybridization
8
genomic loci
8
loci subkilobase
8
chromatin
5
interactions
5

Similar Publications

SMARCA2 protein: Structure, function and perspectives of drug design.

Eur J Med Chem

January 2025

Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China. Electronic address:

SMARCA2 is an ATPase that regulates chromatin structure via ATP pathways, controlling cell division and differentiation. SMARCA2's bromodomain and ATPase domain, crucial for chromatin remodeling and cell regulation, are therapeutic targets in cancer treatment. This review explores the role of SMARCA2 in cancer development by studying its protein structure and physiological functions.

View Article and Find Full Text PDF

Mechanisms for DNA Interplay in Eukaryotic Transcription Factors.

Annu Rev Biophys

January 2025

1CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA; email:

Like their prokaryotic counterparts, eukaryotic transcription factors must recognize specific DNA sites, search for them efficiently, and bind to them to help recruit or block the transcription machinery. For eukaryotic factors, however, the genetic signals are extremely complex and scattered over vast, multichromosome genomes, while the DNA interplay occurs in a varying landscape defined by chromatin remodeling events and epigenetic modifications. Eukaryotic factors are rich in intrinsically disordered regions and are also distinct in their recognition of short DNA motifs and utilization of open DNA interaction interfaces as ways to gain access to DNA on nucleosomes.

View Article and Find Full Text PDF

Resistance to radiotherapy remains a critical barrier in treating colorectal cancer (CRC), particularly in cases of locally advanced rectal cancer (LARC). To identify key kinases involved in CRC radioresistance, we employed a kinase-targeted CRISPR-Cas9 library screen. This approach aimed to identify potential kinase inhibitors as radiosensitizers.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) contributes to ~1.5% of human cancers, including lymphomas, gastric and nasopharyngeal carcinomas. In most of these, nearly 80 viral lytic genes are silenced by incompletely understood epigenetic mechanisms, precluding use of antiviral agents such as ganciclovir to treat the 200,000 EBV-associated cancers/year.

View Article and Find Full Text PDF

c-JUN: a chromatin repressor that limits mesoderm differentiation in human pluripotent stem cells.

Nucleic Acids Res

January 2025

Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Huangpu District, Guangzhou, Guangdong, 510799, China.

Cell fate determination at the chromatin level is not fully comprehended. Here, we report that c-JUN acts on chromatin loci to limit mesoderm cell fate specification as cells exit pluripotency. Although c-JUN is widely expressed across various cell types in early embryogenesis, it is not essential for maintaining pluripotency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!