Background: The COVID-19 pandemic poses a serious threat to global health, and pathogenic mutations are a major challenge to disease control. We developed a statistical framework to explore the association between molecular-level mutation activity of SARS-CoV-2 and population-level disease transmissibility of COVID-19.
Methods: We estimated the instantaneous transmissibility of COVID-19 by using the time-varying reproduction number (R). The mutation activity in SARS-CoV-2 is quantified empirically depending on (i) the prevalence of emerged amino acid substitutions and (ii) the frequency of these substitutions in the whole sequence. Using the likelihood-based approach, a statistical framework is developed to examine the association between mutation activity and R. We adopted the COVID-19 surveillance data in California as an example for demonstration.
Results: We found a significant positive association between population-level COVID-19 transmissibility and the D614G substitution on the SARS-CoV-2 spike protein. We estimate that a per 0.01 increase in the prevalence of glycine (G) on codon 614 is positively associated with a 0.49% (95% CI: 0.39 to 0.59) increase in R, which explains 61% of the R variation after accounting for the control measures. We remark that the modeling framework can be extended to study other infectious pathogens.
Conclusions: Our findings show a link between the molecular-level mutation activity of SARS-CoV-2 and population-level transmission of COVID-19 to provide further evidence for a positive association between the D614G substitution and R. Future studies exploring the mechanism between SARS-CoV-2 mutations and COVID-19 infectivity are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941367 | PMC |
http://dx.doi.org/10.1186/s12976-021-00140-3 | DOI Listing |
Blood Adv
January 2025
The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Cytoskeletal remodeling and mitochondrial bioenergetics play important roles in thrombocytopoiesis and platelet function. Recently, α-actinin-1 mutations have been reported in patients with congenital macrothrombocytopenia. However, the role and underlying mechanism of α-actinin-1 in thrombocytopoiesis and platelet function remain elusive.
View Article and Find Full Text PDFJ Med Chem
January 2025
Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China.
Multidrug-resistant (MDR) bacteria pose a global health threat, underscoring the need for new antibiotics. Lefamulin, the first novel-mechanism antibiotic approved by the FDA in decades, showcases pleuromutilins' promise due to low mutation frequency. However, their clinical use is limited by poor pharmacokinetics and organ toxicity.
View Article and Find Full Text PDFPhysiol Rev
January 2025
Department of Physiology and Membrane Biology, University of California, Davis, School of Medicine, Davis CA, 95616, USA.
Biology uses many signaling mechanisms. Among them, calcium and membrane potential are two prominent mediators for cellular signaling. TRPM4 and TRPM5, two calcium-activated monovalent cation-conducting ion channels, offer a direct linkage between these two signals.
View Article and Find Full Text PDFClin Exp Dermatol
January 2025
School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico.
This study investigates the differential activation of the epithelial-mesenchymal transition (EMT) pathway in metastatic melanoma, focusing on BRAF- and NRAS-mutated samples from The Cancer Genome Atlas (TCGA). Gene Set Enrichment Analysis (GSEA) reveals that BRAF mutations are more significantly associated with increased EMT activation, relative to all other mutations in the dataset. In contrast, NRAS mutations were not significantly associated with gene expression of the EMT pathway, suggesting alternative mechanisms for metastasis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!