A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT. | LitMetric

A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT.

BMC Med Imaging

Center for Computational Imaging and Personalized Diagnostics, Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Drive, Cleveland, OH, 44106-7207, USA.

Published: March 2021

Objective: To investigate left atrial shape differences on CT scans of atrial fibrillation (AF) patients with (AF+) versus without (AF-) post-ablation recurrence and whether these shape differences predict AF recurrence.

Methods: This retrospective study included 68 AF patients who had pre-catheter ablation cardiac CT scans with contrast. AF recurrence was defined at 1 year, excluding a 3-month post-ablation blanking period. After creating atlases of atrial models from segmented AF+ and AF- CT images, an atlas-based implicit shape differentiation method was used to identify surface of interest (SOI). After registering the SOI to each patient model, statistics of the deformation on the SOI were used to create shape descriptors. The performance in predicting AF recurrence using shape features at and outside the SOI and eight clinical factors (age, sex, left atrial volume, left ventricular ejection fraction, body mass index, sinus rhythm, and AF type [persistent vs paroxysmal], catheter-ablation type [Cryoablation vs Irrigated RF]) were compared using 100 runs of fivefold cross validation.

Results: Differences in atrial shape were found surrounding the pulmonary vein ostia and the base of the left atrial appendage. In the prediction of AF recurrence, the area under the receiver-operating characteristics curve (AUC) was 0.67 for shape features from the SOI, 0.58 for shape features outside the SOI, 0.71 for the clinical parameters, and 0.78 combining shape and clinical features.

Conclusion: Differences in left atrial shape were identified between AF recurrent and non-recurrent patients using pre-procedure CT scans. New radiomic features corresponding to the differences in shape were found to predict post-ablation AF recurrence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941998PMC
http://dx.doi.org/10.1186/s12880-021-00578-4DOI Listing

Publication Analysis

Top Keywords

left atrial
16
atrial shape
12
shape features
12
features soi
12
shape
11
atrial
8
atrial fibrillation
8
shape differences
8
post-ablation recurrence
8
recurrence shape
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!