This paper sets out the rationale and design for a more physiologically representative bladder/urethral model than the current rigid funnel industry standard. We suggest this flexible model can better serve as a basis for evaluating new catheters. We investigated the parameters and the validation tests required to construct and test with more flexible materials. The protocol includes static and impact force tests, while measuring internal retention balloon pressure. We have designed a flexible elastomer bladder floor and urethral model and tested it with a Foley balloon catheter. The tests showed that the model could hold the catheter with static loads up to 0.7 kg, but that the catheter was pulled out by impact forces from dropped weights. The Foley catheter design and its associated standards make no provision to mitigate urethral injury in the surprisingly common event of removal with a filled balloon. Our design is a more realistic model for testing retention and extraction characteristics of a urethral catheter. Validation tests have confirmed the feasibility of measuring urethral dilation and balloon pressure, both under traction and during progressive deflation. We suggest this model improves upon the current standard tests and will enable the design of safer catheters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03091902.2021.1893397 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal.
Background/objectives: Côa Valley, located in the northeast of Portugal, harbors more than 500 medicinal plant species. Among them, four species stand out due to their traditional uses: Desf. (hemorrhages, urethritis, hepatitis), L.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 239 3° Piso, Santiago 8370146, Chile.
Urinary incontinence is a widespread issue, particularly among women, with effective treatments remaining elusive. The pig, and especially the female pig, stands as a promising animal model for the study of this condition, due to its anatomical similarities to humans. The aim of this study was to explore the largely uncharted muscular structure of the female pig urethra, linking urethral muscle dysfunction to incontinence.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ultrasound, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
Urinary tract injuries represent a significant clinical challenge, necessitating precise diagnosis and effective treatment strategies. Rat models are preferred for studying urinary tract injuries due to their size, visibility of external genitalia, and robust reproductive and growth capabilities. However, there is a lack of standardized methodologies for evaluating the endpoints of rat urinary tract injury models.
View Article and Find Full Text PDFInt J STD AIDS
January 2025
Department of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.
Background: (MG) is responsible for non-gonococcal urethritis. Our aim is to describe MG positivity rate and incidence in specific populations.
Methods: Retrospective, surveillance study included all samples collected from 2018 to 2022.
J Infect Dis
January 2025
Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
Infection with Neisseria gonorrhoeae, the causative agent of gonorrhoea, causes significant morbidity worldwide and can have long-term impacts on reproductive health. The greatest global burden of gonorrhoea occurs in low- and middle-income settings. Global public health significance is increasing due to rising antimicrobial resistance (AMR), which threatens future gonorrhoea management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!