Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent experiments, the light-matter interaction has reached the ultrastrong coupling limit, which can give rise to dynamical generalizations of spatial symmetries in periodically driven systems. Here, we present a unified framework of dynamical-symmetry-protected selection rules based on Floquet response theory. Within this framework, we study rotational, parity, particle-hole, chiral, and time-reversal symmetries and the resulting selection rules in spectroscopy, including symmetry-protected dark states (spDS), symmetry-protected dark bands, and symmetry-induced transparency. Specifically, dynamical rotational and parity symmetries establish spDS and symmetry-protected dark band conditions. A particle-hole symmetry introduces spDSs for symmetry-related Floquet states and also a symmetry-induced transparency at quasienergy crossings. Chiral symmetry and time-reversal symmetry alone do not imply spDS conditions but can be combined to define a particle-hole symmetry. These symmetry conditions arise from destructive interference due to the synchronization of symmetric quantum systems with the periodic driving. Our predictions reveal new physical phenomena when a quantum system reaches the strong light-matter coupling regime, which is important for superconducting qubits, atoms and molecules in optical or plasmonic field cavities, and optomechanical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.126.090601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!