Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interplay between non-Hermiticity and disorder plays an important role in condensed matter physics. Here, we report the universal critical behaviors of the Anderson transitions driven by non-Hermitian disorders for a three-dimensional (3D) Anderson model and 3D U(1) model, which belong to 3D class AI^{†} and 3D class A in the classification of non-Hermitian systems, respectively. Based on level statistics and finite-size scaling analysis, the critical exponent for the length scale is estimated as ν=0.99±0.05 for class AI^{†}, and ν=1.09±0.05 for class A, both of which are clearly distinct from the critical exponents for 3D orthogonal and 3D unitary classes, respectively. In addition, spectral rigidity, level spacing distribution, and level spacing ratio distribution are studied. These critical behaviors strongly support that the non-Hermiticity changes the universality classes of the Anderson transitions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.126.090402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!