Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of catalysts for volatile organic compound (VOC) treatment by catalytic oxidation is of great significance to improve the atmospheric environment. Size-effect and oxygen vacancy engineering are effective strategies for designing high-efficiency heterogeneous catalysts. Herein, we explored the in situ carbon-confinement-oxidation method to synthesize ultrafine MnO nanoparticles with adequately exposed defects. They exhibited an outstanding catalytic performance with a of 167 °C for acetone oxidation, which is 73 °C lower than that of bulk MnO (240 °C). This excellent catalytic activity was primarily ascribed to their high surface area, rich oxygen vacancies, abundant active oxygen species, and good reducibility at low temperatures. Importantly, the synthesized ultrafine MnO exhibited impressive stability in long-term, cycling and water-resistance tests. Moreover, the possible mechanism for acetone oxidation over MnO-NA was revealed. In this work, we not only prepared a promising material for removing VOCs but also provided a new strategy for the rational design of ultrafine nanoparticles with abundant defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c08335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!