High mortality in acute lung injury (ALI) results from sustained proinflammatory signaling by alveolar receptors, such as TNF-α receptor type 1 (TNFR1). Factors that determine the sustained signaling are not known. Unexpectedly, optical imaging of live alveoli revealed a major TNF-α-induced surge of alveolar TNFR1 due to a Ca2+-dependent mechanism that decreased the cortical actin fence. Mouse mortality due to inhaled LPS was associated with cofilin activation, actin loss, and the TNFR1 surge. The constitutively active form of the GTPase, Rac1 (V12Rac1), given intranasally (i.n.) as a noncovalent construct with a cell-permeable peptide, enhanced alveolar filamentous actin (F-actin) and blocked the TNFR1 surge. V12Rac1 also protected against ALI-induced mortality resulting from i.n. instillation of LPS or of Pseudomonas aeruginosa. We propose a potentially new therapeutic paradigm in which actin enhancement by exogenous Rac1 strengthens the alveolar actin fence, protecting against proinflammatory receptor hyperexpression, and therefore blocking ALI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026177 | PMC |
http://dx.doi.org/10.1172/jci.insight.135753 | DOI Listing |
Elife
September 2024
Department of Cell & Tissue Biology, University of California, San Francisco, San Francisco, United States.
Our understanding of the transitions of human embryonic stem cells (hESCs) between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of hESCs as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for formation of the actin ring, to establish uniform cell mechanics within naïve colonies, to promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and for effective transition to naïve pluripotency.
View Article and Find Full Text PDFThe cell cortex is a dynamic assembly formed by the plasma membrane and underlying cytoskeleton. As the main determinant of cell shape, the cortex ensures its integrity during passive and active deformations by adapting cytoskeleton topologies through yet poorly understood mechanisms. The spectrin meshwork ensures such adaptation in erythrocytes and neurons by adopting different organizations.
View Article and Find Full Text PDFR Soc Open Sci
July 2023
Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany.
Studying membrane dynamics is important to understand the cellular response to environmental stimuli. A decisive spatial characteristic of the plasma membrane is its compartmental structure created by the actin-based membrane-skeleton (fences) and anchored transmembrane proteins (pickets). Particle-based reaction-diffusion simulation of the membrane offers a suitable temporal and spatial resolution to analyse its spatially heterogeneous and stochastic dynamics.
View Article and Find Full Text PDFThe cell cortex is a dynamic assembly that ensures cell integrity during passive deformation or active response by adapting cytoskeleton topologies with poorly understood mechanisms. The spectrin meshwork ensures such adaptation in erythrocytes and neurons. Erythrocytes rely on triangular-like lattices of spectrin tetramers, which in neurons are organized in periodic arrays.
View Article and Find Full Text PDFSci Rep
February 2022
Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Cortical actin plays a key role in cell movement and division, but has also been implicated in the organisation of cell surface receptors such as G protein-coupled receptors. The actin mesh proximal to the inner membrane forms small fenced regions, or 'corrals', in which receptors can be constrained. Quantification of the actin mesh at the nanoscale has largely been attempted in single molecule datasets and electron micrographs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!