In the increasingly pressing context of improving recycling, optical technologies present a broad potential to support the adequate sorting of plastics. Nevertheless, the commercially available solutions (for example, employing near-infrared spectroscopy) generally focus on identifying mono-materials of a few selected types which currently have a market-interest as secondary materials. Current progress in photonic sciences together with advanced data analysis, such as artificial intelligence, enable bridging practical challenges previously not feasible, for example in terms of classifying more complex materials. In the present paper, the different techniques are initially reviewed based on their main characteristics. Then, based on academic literature, their suitability for monitoring the composition of multi-materials, such as different types of multi-layered packaging and fibre-reinforced polymer composites as well as black plastics used in the motor vehicle industry, is discussed. Finally, some commercial systems with applications in those sectors are also presented. This review mainly focuses on the materials identification step (taking place after waste collection and before sorting and reprocessing) but in outlook, further insights on sorting are given as well as future prospects which can contribute to increasing the circularity of the plastic composites' value chains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165644PMC
http://dx.doi.org/10.1177/0734242X21997908DOI Listing

Publication Analysis

Top Keywords

monitoring composition
8
composition multi-materials
8
review photonic
4
photonic techniques
4
techniques suitable
4
suitable automatic
4
automatic monitoring
4
multi-materials wastes
4
wastes view
4
view posterior
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!