Introduction: The World Health Organization currently classifies medulloblastoma (MB) into four molecular groups (WNT, SHH, Group 3 and Group 4) and four histologic subtypes (classic, desmoplastic nodular, MB with extensive nodularity, and large cell/anaplastic). "Classic" MB is the most frequent histology, but unfortunately it does not predict molecular group or patient outcome. While MB may exhibit additional histologic features outside of the traditional WHO subtypes, the clinical significance of such features, in a molecular context, is unclear.
Methods: The clinicopathologic features of 120 pediatric MB were reviewed in the context of NanoString molecular grouping. Each case was evaluated for five ancillary histologic features, including: nodularity without desmoplasia (i.e., "biphasic", B-MB), rhythmic palisades, and focal anaplasia. Molecular and histological features were statistically correlated to clinical outcome using Chi-square, log-rank, and multivariate Cox regression analysis.
Results: While B-MB (N = 32) and rhythmic palisades (N = 12) were enriched amongst non-WNT/SHH MB (especially Group 4), they were not statistically associated with outcome. In contrast, focal anaplasia (N = 12) was not associated with any molecular group, but did predict unfavorable outcome.
Conclusion: These data nominate B-MB as a surrogate marker of Groups 3 and particularly 4 MB, which may earmark a clinically significant subset of cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/10935266211001986 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científica, Armilla 18100, Spain.
Revealing the origin of life and unambiguously detecting fossil remains of the earliest organisms are closely related aspects of the same scientific research. The synthesis of prebiotic molecular building blocks of life and the first compartmentalization into protocells have been considered two events apart in time, space, or both. We conducted lightning experiments in borosilicate reactors filled with a mixture of gases mimicking plausible geochemical conditions of early Earth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Duke University Medical Center, Durham, NC 27701.
In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen 52074, Germany.
Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!