Hydration Thermodynamics of Familial Parkinson's Disease-Linked Mutants of α-Synuclein.

J Chem Inf Model

Department of Chemistry, University of Delhi, Delhi 110007, India.

Published: April 2021

The hydration thermodynamics of different mutants of α-synuclein (α-syn) related to familial Parkinson's disease (PD) is explored using a computational approach that combines both molecular dynamics simulations in water and integral equation theory of molecular liquids. This analysis focuses on the change in conformational entropy, hydration free energy (HFE), and partial molar volume of α-syn upon mutation. The results show that A53T, A30P, E46K, and H50Q mutants aggregate more readily and display increased HFE and less negative interaction volume than the wild-type α-syn. In contrast, an opposite trend is observed for the G51D mutant with a lower experimental aggregation rate. The residuewise decomposition analysis of the HFE highlights that the dehydration/hydration of the hydrophilic residue-rich N- and C-termini of α-syn majorly contributes to the change upon mutation. The hydration shell contributions of different residues to the interaction volume are consistent with its increase/decrease upon mutation. This work shows that both HFE and interaction volume determine the aggregation kinetics of α-syn upon mutation and may serve as an appropriate benchmark for the treatment of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.1c00034DOI Listing

Publication Analysis

Top Keywords

interaction volume
12
hydration thermodynamics
8
familial parkinson's
8
mutants α-synuclein
8
α-syn mutation
8
α-syn
5
hydration
4
thermodynamics familial
4
parkinson's disease-linked
4
disease-linked mutants
4

Similar Publications

During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.

View Article and Find Full Text PDF

We seek to establish a parsimonious mathematical framework for understanding the interaction and dynamics of the response of pancreatic cancer to the NGC triple chemotherapy regimen (mNab-paclitaxel, gemcitabine, and cisplatin), stromal-targeting drugs (calcipotriol and losartan), and an immune checkpoint inhibitor (anti-PD-L1). We developed a set of ordinary differential equations describing changes in tumor size (growth and regression) under the influence of five cocktails of treatments. Model calibration relies on three tumor volume measurements obtained over a 14-day period in a genetically engineered pancreatic cancer model (KrasLSLG12D-Trp53LSLR172H-Pdx1-Cre).

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.

View Article and Find Full Text PDF

Introduction: Mu-opioid receptors (MORs) are G-coupled protein receptors with a high affinity for both endogenous and exogenous opioids. MORs are widely expressed in the central nervous system (CNS), peripheral organs, and the immune system. They mediate pain and reward and have been implicated in the pathophysiology of opioid, cocaine, and other substance use disorders.

View Article and Find Full Text PDF

This paper presents an adaption of the finite-element based beam-to-beam contact interactions into a finite volume numerical framework. A previous work of the same authors, where a cell-centred based finite volume implementation of geometrically exact nonlinear Simo-Reissner beams was developed, is used as an underlying mathematical model. An implicit contact procedure is developed for both point-to-point and line-to-line beam frictionless contact interactions, and is implemented using the cell-centred finite volume method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!