We report the one-step assembly of vaccine particles by encapsulating ovalbumin (OVA) and cytosine-phosphate-guanine oligodeoxynucleotides (CpG) into poly(ethylene glycol) (PEG)-mediated zeolitic imidazolate framework-8 nanoparticles (OVA-CpG@ZIF-8 NPs), where PEG improves the stability and dispersity of ZIF-8 NPs and the NPs protect the encapsulated OVA and CpG to circumvent the cold chain issue. Compared with free OVA and OVA-encapsulated ZIF-8 (OVA@ZIF-8) NPs, OVA-CpG@ZIF-8 NPs can enhance antigen uptake, cross-presentation, dendritic cell (DC) maturation, production of specific antibody and cytokines, and CD4 T and CD8 T cell activation. More importantly, the vaccine particles retain their bioactivity against enzymatic degradation, elevated temperatures, and long-term storage at ambient temperature. The study highlights the importance of PEG-mediated ZIF-8 NPs as a vaccine delivery system for the promising application of effective and cold chain-independent vaccination against diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c00706DOI Listing

Publication Analysis

Top Keywords

vaccine particles
12
assembly vaccine
8
ova-cpg@zif-8 nps
8
zif-8 nps
8
nps
6
polyethylene glycol-mediated
4
glycol-mediated assembly
4
vaccine
4
particles improve
4
improve stability
4

Similar Publications

One approach for developing a more universal influenza vaccine is to elicit strong immune responses against canonically immunosubdominant epitopes in the surface exposed viral glycoproteins. While standard vaccines typically induce responses directed primarily against mutable epitopes in the hemagglutinin (HA) head domain, there are generally limited or variable responses directed against epitopes in the relatively more conserved HA stalk domain and neuraminidase (NA) proteins. Here we describe a vaccine approach that utilizes a combination of wildtype (WT) influenza virus particles along with virus particles engineered to display a trimerized HA stalk in place of the full-length HA protein to elicit both responses simultaneously.

View Article and Find Full Text PDF

Coronaviruses are characterized by their progeny assembly and budding in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). Our previous studies demonstrated that truncation of 9 amino acids in the cytoplasmic tail (CT) of the infectious bronchitis virus (IBV) spike (S) protein impairs its localization to the ERGIC, resulting in increased expression at the plasma membrane. However, the precise mechanism underlying this phenomenon remained elusive.

View Article and Find Full Text PDF

Microfluidics Based Particle and Droplet Generation for Gene and Drug Delivery Approaches.

J Biomed Mater Res B Appl Biomater

February 2025

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey.

Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations.

View Article and Find Full Text PDF

Virus-like particles (VLPs), as a unique form of nanocarrier, predominantly encompass hollow protein shells that exhibit analogous morphology and structure to naturally occurring viruses, yet devoid of genetic material. VLPs are considered safe, easily modifiable, and stable, making them suitable for preparation in various expression systems. They serve as precise biological instruments with broad applications in the field of medical biology.

View Article and Find Full Text PDF

A Universal Therapeutic Vaccine Leveraging Autologous Pre-Existing Immunity to Eliminate in Situ Uniformly Engineered Heterogeneous Tumor Cells.

Adv Mater

January 2025

Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.

Tumor vaccines that activate the autologous immune system to eliminate tumor cells represent a promising approach in cancer immunotherapy. However, challenges such as tumor heterogeneity, limited antigen selection, insufficient antigen presentation, and the slow onset of de novo immune responses have resulted in poor universality and suboptimal response rates. In contrast, pathogen-specific pre-existing immunity acquired through infection or vaccination, can rapidly generate a more potent and enduring immune response upon re-encounter with the same antigen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!