A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers.

J Biomed Mater Res B Appl Biomater

Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar.

Published: November 2021

Since the discovery and fabrication of carbon nanofibers (CNFs) over a decade ago, scientists foster to discover novel myriad potential applications for this material in both biomedicine and industry. The unique economic viability, mechanical, electrical, optical, thermal, and structural properties of CNFs led to their rapid emergence. CNFs become an artificial intelligence platform for different uses, including a wide range of biomedical applications. Furthermore, CNFs have exceptionally large surface areas that make them flexible for tailoring and functionalization on demand. This review highlights the recent progress and achievements of CNFs in a wide range of biomedical fields, including cancer therapy, biosensing, tissue engineering, and wound dressing. Besides the synthetic techniques of CNFs, their potential toxicity and limitations, as biomaterials in real clinical settings, will be presented. This review discusses CNF's future investigations in other biomedical fields, including gene delivery and bioimaging and CNFs risk assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.34828DOI Listing

Publication Analysis

Top Keywords

biomedical applications
8
carbon nanofibers
8
wide range
8
range biomedical
8
biomedical fields
8
fields including
8
cnfs
7
comprehensive review
4
review summarizing
4
biomedical
4

Similar Publications

Background: T thermometry is considered a straight method for the safety monitoring of patients with deep brain stimulation (DBS) electrodes against radiofrequency-induced heating during Magnetic Resonance Imaging (MRI), requiring different sequences and methods.

Objective: This study aimed to compare two T thermometry methods and two low specific absorption rate (SAR) imaging sequences in terms of the output image quality.

Material And Methods: In this experimental study, a gel phantom was prepared, resembling the brain tissue properties with a copper wire inside.

View Article and Find Full Text PDF

Magnetic Resonance Imaging (MRI) allows analyzing speech production by capturing high-resolution images of the dynamic processes in the vocal tract. In clinical applications, combining MRI with synchronized speech recordings leads to improved patient outcomes, especially if a phonological-based approach is used for assessment. However, when audio signals are unavailable, the recognition accuracy of sounds is decreased when using only MRI data.

View Article and Find Full Text PDF

CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated proteins) has undergone marked advancements since its discovery as an adaptive immune system in bacteria and archaea, emerged as a potent gene-editing tool after the successful engineering of its synthetic guide RNA (sgRNA) toward the targeting of specific DNA sequences with high accuracy. Besides its DNA editing ability, further-developed Cas variants can also edit the epigenome, rendering the CRISPR-Cas system a versatile tool for genome and epigenome manipulation and a pioneering force in precision medicine. This review explores the latest advancements in CRISPR-Cas technology and its therapeutic and biomedical applications, highlighting its transformative impact on precision medicine.

View Article and Find Full Text PDF

Electrospun nanofiber scaffolds have become vital in biomedical applications due to their high surface area and tunable properties. Chitosan (CS) is widely used, but its rapid degradation limits its effectiveness. This study addresses this limitation by blending CS with polycaprolactone (PCL) and applying genipin cross-linking to enhance its stability and mechanical properties.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) play a pivotal role in cancer metastasis and hold considerable potential for clinical diagnosis, therapeutic monitoring, and prognostic evaluation. Nevertheless, the limited quantity of CTCs in liquid biopsy samples poses challenges for comprehensive downstream analysis. In vitro culture of CTCs can effectively address the issue of insufficient CTC numbers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!