Biphasic systems have received increasing attention for acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural (HMF) because of their high efficiency in in situ extraction and stabilization of HMF. Different organic solvents and acid catalysts were applied in these systems, but their effects on the dehydration activity and HMF yield, and the recycling of homogeneous acid catalysts remain largely unexplored. Here, we tested different solvent systems containing a wide range of organic solvents with low boiling points to study the effects of their chemical structures on fructose dehydration and provided stable HO-dioxane and HO-acetonitrile biphasic systems with high HMF yields of 76-79% using water-soluble sulfonic derivatives as homogeneous acid catalysts under mild conditions (383 K). By analyzing the partition coefficients of HMF and sulfonic derivatives, 94.3% of HMF and 87.1% of NHSOH were, respectively, restrained in the dioxane phase and aqueous phase in the HO-dioxane biphasic system and easily divided by phase separation. The effects of the adjacent group in sulfonic derivatives and reaction temperature on fructose conversions and HMF yields suggest that in a specific biphasic system, the catalysts' acidity and reaction conditions significantly affect the fructose dehydration activity but hardly influence the optimal yield of HMF, and an almost constant amount of carbon loss was observed mainly due to the poor hydrothermal stability of fructose. Such developments offer a promising strategy to address the challenge in the separation and recycling of homogeneous acid catalysts in the practical HMF production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970464PMC
http://dx.doi.org/10.1021/acsomega.0c05857DOI Listing

Publication Analysis

Top Keywords

acid catalysts
20
sulfonic derivatives
16
homogeneous acid
12
hmf
9
solvent systems
8
biphasic systems
8
organic solvents
8
dehydration activity
8
recycling homogeneous
8
fructose dehydration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!