Nano-heterostructures have attracted immense attention recently due to their remarkable interfacial properties determined by the heterointerface of different nanostructures. Here, using first-principles density functional theory (DFT) calculations, we examine what range the variable electronic properties such as the electronic band gap can be tuned by combining two dissimilar nanostructures consisting of atomically thin nanostructured MoS clusters with small silver and gold nanoparticles (Ag/Au NPs). Most interestingly, our calculations show that the electronic band gap of the nanostructured MoS cluster can be tuned from 2.48 to 1.58 and 1.61 eV, by the formation of heterostructures with silver and gold metal nanoclusters, respectively. This band gap is ideal for various applications ranging from flexible nanoelectronics to nanophotonics applications. Furthermore, the adsorption of H molecules on both nano-heterostructures is investigated, and the computed binding energies are found to be within the desirable range. The reported theoretical results provide inspiration for engineering various optoelectronic applications for nanostructured MoS-based heterostructures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970460 | PMC |
http://dx.doi.org/10.1021/acsomega.0c05274 | DOI Listing |
Langmuir
December 2024
Department of Physics, National Institute of Technology, Jamshedpur-831014, India.
We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics and Materials Science, Shoolini University, Solan, H.P., India.
The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Materials Science and Engineering, Chosun University, Gwangju 61452, Korea.
With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.
Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott-Schottky (M-S) and band structure analyses.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, National Engineering Research Center of Wide Band-Gap Semiconductor, School of Microelectronics, Xidian University, Xi'an 710071, China.
This study systematically investigates the effects of anode metals (Ti/Au and Ni/Au) with different work functions on the electrical and temperature characteristics of β-GaO-based Schottky barrier diodes (SBDs), junction barrier Schottky diodes (JBSDs) and P-N diodes (PNDs), utilizing Silvaco TCAD simulation software, device fabrication and comparative analysis. From the perspective of transport characteristics, it is observed that the SBD exhibits a lower turn-on voltage and a higher current density. Notably, the V of the Ti/Au anode SBD is merely 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!