Proteomic analysis of drug-susceptible and multidrug-resistant nonreplicating Beijing strains of cultured .

Biochem Biophys Rep

Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.

Published: July 2021

The existence of latent tuberculosis infection (LTBI) is one of the main obstacles hindering eradication of tuberculosis (TB). To better understand molecular mechanisms and explore biomarkers for the pathogen during LTBI, we cultured strains of () under stress conditions, mimicking those in the host granuloma intracellular environment, to induce entry into the non-replicating persistence stage. The stresses included hypoxia, low pH (5.0), iron deprivation (100 μM of 2, 2'-dipyridyl) and nutrient starvation (10% M7H9 medium). Three Mtb strains were studied: two clinical isolates (drug-susceptible Beijing (BJ) and multidrug-resistant Beijing (MDR-BJ) strains) and the reference laboratory strain, H37Rv. We investigated the proteomics profiles of these strains cultured in stressful conditions and then validated the findings by transcriptional analysis. NarJ (respiratory nitrate reductase delta chain) was significantly up-regulated at the protein level and the mRNA level in all three Mtb strains. The narJ gene is a member of the narGHJI operon encoding all nitrate reductase subunits, which play a role in nitrate metabolism during the adaptation of to stressful intracellular environments and the subsequent establishment of latent TB. The identification of up-regulated mRNAs and proteins of under stress conditions could assist development of biomarkers, drug targets and vaccine antigens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960788PMC
http://dx.doi.org/10.1016/j.bbrep.2021.100960DOI Listing

Publication Analysis

Top Keywords

strains cultured
8
stress conditions
8
three mtb
8
mtb strains
8
nitrate reductase
8
strains
6
proteomic analysis
4
analysis drug-susceptible
4
drug-susceptible multidrug-resistant
4
multidrug-resistant nonreplicating
4

Similar Publications

Human cancer cell lines are the mainstay of cancer research. Recent reports showed that highly mutated adult carcinoma cell lines (mainly HeLa and MCF-7) present striking diversity across laboratories and that long-term continuous culturing results in genomic/transcriptomic heterogeneity with strong phenotypical implications. Here, we hypothesize that oligomutated pediatric sarcoma cell lines mainly driven by a fusion transcription factor, such as Ewing sarcoma (EwS), are genetically and phenotypically more stable than the previously investigated adult carcinoma cell lines.

View Article and Find Full Text PDF

A novel selective medium for isolation of Limosilactobacillus reuteri from dietary supplements.

J Food Drug Anal

December 2024

Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.

Limosilactobacillus reuteri is a probiotic bacterium known for its numerous beneficial effects on human health and is commonly utilized in various dietary supplements. Previously, we encountered difficulties in isolating L. reuteri from retail dietary supplements containing complex probiotic compositions by using non-selective media such as de Man, Rogosa, and Sharpe (MRS) agar.

View Article and Find Full Text PDF

Diseases that affect the vascular system or the pith are of great economic impact since they can rapidly destroy the affected plants, leading to complete loss in production. Fast and precise identification is thus important to inform containment and management, but many identification methods are slow because they are culture-dependent and they do not reach strain resolution. Here we used culture-independent long-read metagenomic sequencing of DNA extracted directly from stems of two tomato samples that displayed wilt symptoms.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.

Background: Increasing evidence suggests that SARS-CoV-2 infection may lead to early onset and aggravation of pre-existing vascular dementia and Alzheimer's disease. Methylene tetrahydrofolate reductase (Mthfr) is a critical enzyme in folate metabolism, also required for optimal brain function. Mthfr deficient mice display cognitive impairments and neurovascular deficits and polymorphisms in MTHFR increases dementia risk.

View Article and Find Full Text PDF

Background: Pathological tau forms from Alzheimer's disease (AD) brains act as seeds, replicating in cells and forming tau aggregates in a template-like manner. The exploration of this prion-like pathogenic mechanism has predominantly occurred in transgenic mice and cell systems that overexpress tau protein and its truncated forms with pro-aggregation mutations. However, these systems do not entirely capture the propagation kinetics and template conformational changes of various tau seeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!