Objectives: To systematically evaluate and compare the predictive capability for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients based on radiomics from multi-parametric MRI (mp-MRI) including six sequences when used individually or combined, and to establish and validate the optimal combined model.

Methods: A total of 195 patients confirmed HCC were divided into training (n = 136) and validation (n = 59) datasets. All volumes of interest of tumors were respectively segmented on T-weighted imaging, diffusion-weighted imaging, apparent diffusion coefficient, artery phase, portal venous phase, and delay phase sequences, from which quantitative radiomics features were extracted and analyzed individually or combined. Multivariate logistic regression analyses were undertaken to construct clinical model, respective single-sequence radiomics models, fusion radiomics models based on different sequences and combined model. The accuracy, sensitivity, specificity and area under the receiver operating characteristic curve (AUC) were calculated to evaluate the performance of different models.

Results: Among nine radiomics models, the model from all sequences performed best with AUCs 0.889 and 0.822 in the training and validation datasets, respectively. The combined model incorporating radiomics from all sequences and effective clinical features achieved satisfactory preoperative prediction of MVI with AUCs 0.901 and 0.840, respectively, and could identify the higher risk population of MVI (P < 0.001). The Delong test manifested significant differences with P < 0.001 in the training dataset and P = 0.005 in the validation dataset between the combined model and clinical model.

Conclusions: The combined model can preoperatively and noninvasively predict MVI in HCC patients and may act as a usefully clinical tool to guide subsequent individualized treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968223PMC
http://dx.doi.org/10.3389/fonc.2021.633596DOI Listing

Publication Analysis

Top Keywords

combined model
16
radiomics models
12
preoperative prediction
8
microvascular invasion
8
hepatocellular carcinoma
8
multi-parametric mri
8
hcc patients
8
individually combined
8
validation datasets
8
radiomics
7

Similar Publications

In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.

View Article and Find Full Text PDF

Background: To develop and validate a clinical-radiomics model for preoperative prediction of lymphovascular invasion (LVI) in rectal cancer.

Methods: This retrospective study included data from 239 patients with pathologically confirmed rectal adenocarcinoma from two centers, all of whom underwent MRI examinations. Cases from the first center (n = 189) were randomly divided into a training set and an internal validation set at a 7:3 ratio, while cases from the second center (n = 50) constituted the external validation set.

View Article and Find Full Text PDF

Purpose: Heart failure (HF) is a disease that leads to approximately 300,000 fatalities annually in Europe and 250,000 deaths each year in the United States. Type 2 Diabetes Mellitus (T2DM) is a significant risk factor for HF, and testing for N-terminal (NT)-pro hormone BNP (NT-proBNP) can aid in early detection of HF in T2DM patients. We therefore developed and validated the HFriskT2DM-HScore, an algorithm to predict the risk of HF in T2DM patients, so guiding NT-proBNP investigation in a primary care setting.

View Article and Find Full Text PDF

Motivation: The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.

Results: In this work we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations.

View Article and Find Full Text PDF

Motivation: Understanding the associations between traits and microbial composition is a fundamental objective in microbiome research. Recently, researchers have turned to machine learning (ML) models to achieve this goal with promising results. However, the effectiveness of advanced ML models is often limited by the unique characteristics of microbiome data, which are typically high-dimensional, compositional, and imbalanced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!