LRG1 promotes epithelial-mesenchymal transition of retinal pigment epithelium cells by activating NOX4.

Int J Ophthalmol

State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.

Published: March 2021

Aim: To investigate the effect of leucine-rich-alpha-2-glycoprotein 1 (LRG1) on epithelial-mesenchymal transition (EMT) in retinal pigment epithelium (RPE) cells, and to explore the role of NADPH oxidase 4 (NOX4).

Methods: RPE cells (ARPE-19 cell line) were treated with transforming growth factor-β1 (TGF-β1) to induce EMT. Changes of the mRNA and protein expression levels of LRG1 were tested in the TGF-β1 treated cells. The recombinant human LRG1 protein (rLRG1) and siRNA of LRG1 were used to establish accumulation of exogenous LRG1 model and the down-regulation of LRG1 model in ARPE-19 cells respectively, and to detect EMT-related markers including fibronectin, α-smooth muscle actin (α-SMA) and zonula occludens-1 (ZO-1). The mRNA and protein expression level of NOX4 were measured according to the above treatments. VAS2870 was used as a NOX4 inhibitor in rLRG1-treated cells. EMT-related markers were detected to verify the effect of NOX4 in the process of EMT.

Results: TGF-β1 promoted the expression of LRG1 at both the mRNA and protein levels during the process of EMT which showed the up-regulation of fibronectin and α-SMA, as well as the down-regulation of ZO-1. Furthermore, the rLRG1 promoted EMT of ARPE-19 cells, which manifested high levels of fibronectin and α-SMA and low level of ZO-1, whereas knockdown of LRG1 prevented EMT by decreasing the expressions of fibronectin and α-SMA and increasing the expression of ZO-1 in ARPE-19 cells. Besides, the rLRG1 activated and LRG1 siRNA suppressed NOX4 expression. EMT was inhibited when VAS2870 was used in the rLRG1-treated cells.

Conclusion: These results for the first time demonstrate that LRG1 promotes EMT of RPE cells by activating NOX4, which may provide a novel direction to explore the mechanisms of subretinal fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930530PMC
http://dx.doi.org/10.18240/ijo.2021.03.03DOI Listing

Publication Analysis

Top Keywords

rpe cells
12
mrna protein
12
arpe-19 cells
12
fibronectin α-sma
12
lrg1
11
cells
9
lrg1 promotes
8
epithelial-mesenchymal transition
8
retinal pigment
8
pigment epithelium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!