The effects of incorporation of stinging nettle extract (3% and 6%) and ɛ-polylysine (0.1% and 0.2%) on chemical, microbial properties, and stability of rainbow trout fish fillets wrapped in polyethylene bags (in atmosphere condition) and refrigerated for 12 days at 4°C were evaluated. No remarkable differences regarding the chemical composition of rainbow trout fish (protein, moisture, fat, and ash content) resulting from the treatments were noted. The lowest TBARS (thiobarbituric acid reactive substance) and the highest phenolic compounds were noted in samples treated with 6% SNE + 0.2% ɛ-PL on day 12, while the highest inhibitory effects against the growth of TVC, psychrotrophic bacteria, coliform, yeast, and molds corresponded to samples treated with 6% SNE (T4 and T5) at day 12. During the storage, the samples' TVB-N (total volatile base nitrogen) increased, whereas the total phenolic content of the rainbow trout samples declined. The rainbow trout samples treated with 6% SNE + 0.2% ɛ-PL had the highest amount of redness and the lowest TVB-N values. Therefore, these natural ingredients could be used to maintain rainbow trout meat quality and shelf life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958555 | PMC |
http://dx.doi.org/10.1002/fsn3.2129 | DOI Listing |
Am J Physiol Regul Integr Comp Physiol
January 2025
Biology Department, University of Ottawa, Ottawa, Ontario, Canada.
The impact of hyperlipidemia on fuel selection has never been investigated in fish. This study quantifies how Intralipid administration affects: (i) mobilization of lipids (lipolytic rate: glycerol) and carbohydrates (hepatic glucose production: glucose) in rainbow trout, and (ii) key proteins involved in the regulation of fuel metabolism that could explain changes in glycerol and glucose kinetics. Results show that Intralipid triples lipolytic rate (from 2.
View Article and Find Full Text PDFSci Rep
January 2025
Nanotechnology Department, Faculty of Science, Urmia University, Urmia, Iran.
Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
Given the need to reduce animal testing for environmental risk assessment, we aim to develop a fish invitrome, an alternative fish modular framework capable of predicting chemical toxicity in fish without the use of animals. The central module of the framework is the validated RTgill-W1 cell line assay that predicts fish acute toxicity of chemicals (Organization for Economic Cooperation and Development Test Guideline (OECD TG) 249). Expanding towards prediction of chronic toxicity, the fish invitrome includes two other well-advanced modules for chemical bioaccumulation/biotransformation and inhibition of fish growth.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Research Institute for Farm Animal Biology, Dummerstorf, Germany.
Human activities and climate change have significantly increased humic substances in freshwater ecosystems over the last few decades. This increase is particularly concerning during seasonal changes or after heavy rainfall, when concentrations can easily increase up to tenfold. This phenomenon, known as "browning," has unknown consequences for aquatic organisms.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland.
Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!