Perennial ryegrass () is a temperate grass species commonly used as pasture for livestock. Flowering (heading) of ryegrass impacts metabolizable energy content and seed yield, therefore this trait is important for both farmers and seed producers. In related grass species, the genes (-) have been largely implicated in the determination of vernalization response and are responsible for much of the intra-species variation in this trait. Many other important flowering-time regulators have been cataloged in the model grass however, in several cases, such as , their ryegrass homologs have not been well-characterized. Here, ryegrass homologs of important flowering time genes from were identified through available synteny data and sequence similarity. Phylogenetic analysis of and genes was performed to elucidate these families further. The expression patterns of these genes were assessed during vernalization. This confirmed the key roles played by and in the promotion of flowering. Furthermore, two orthologs of identified here, as well as an ortholog of , were expressed prior to vernalization, and were repressed in flowering plants, suggesting a role in floral repression. Significant variability in expression of these flowering pathway genes in diverse genotypes was detected and may underlie variation in flowering time and vernalization response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973463PMC
http://dx.doi.org/10.3389/fpls.2021.640324DOI Listing

Publication Analysis

Top Keywords

perennial ryegrass
8
grass species
8
vernalization response
8
ryegrass homologs
8
flowering time
8
genes
6
flowering
6
ryegrass
5
vernalization
5
identification characterization
4

Similar Publications

Early root traits, particularly total root length, are heritable and show positive genetic correlations with biomass yield in perennial ryegrass; incorporating them into breeding programs can enhance genetic gain. Perennial ryegrass (Lolium perenne L.) is an important forage grass widely used in pastures and lawns, valued for its high nutritive value and environmental benefits.

View Article and Find Full Text PDF

Elevated atmospheric CO2 (e[CO2]) often enhances plant photosynthesis and improves water status. However, the effects of e[CO2] vary significantly and are believed to be influenced by water availability. With the future warmer climate expected to increase the frequency and severity of extreme rainfall, the response of plants to e[CO2] under changing precipitation patterns remains uncertain.

View Article and Find Full Text PDF

Effects of Concentrate Feed Starch Source Offered Twice a Day on Feed Intake and Milk Production of Cows During the Early Postpartum Period.

Animals (Basel)

December 2024

Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Ellinbank, Victoria 3821, Australia.

This experiment determined the effects of two different starch sources when offered twice a day to cows during the early postpartum period (1 to 23 d postpartum, treatment period) on dry matter intake (DMI), feeding behavior, and milk production. The subsequent effects on milk production in the carryover period (24 to 72 d) where cows received a common diet (grazed perennial ryegrass pasture plus concentrate supplements) were also measured. Thirty-two multiparous dairy cows were offered concentrate feed (8 kg DM/d) containing 5 kg DM of crushed wheat grain or ground corn grain (7 h in vitro starch digestibility of 65.

View Article and Find Full Text PDF

Integrated metabolomic and transcriptomic analysis reveals the role of root phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass.

BMC Plant Biol

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, P.R. China.

Article Synopsis
  • Perennial ryegrass exhibits varying levels of salt tolerance, with genotype P1 identified as salt-sensitive and genotype P2 as salt-tolerant when exposed to 200 mM NaCl.
  • Through transcriptomics and metabolomics analyses, researchers found 5,728 differentially expressed genes (DEGs) in response to salt stress, highlighting key genes and pathways that contribute to salt tolerance, such as antioxidant enzyme genes and metabolic pathways related to secondary metabolite biosynthesis.
  • The study underscores the prominence of the phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass, particularly in genotype P2, which showed higher levels of beneficial compounds like flavonoids and anthocyanins.
View Article and Find Full Text PDF

Greenhouse gas (GHG) emissions from livestock ruminants, particularly methane (CH), nitrous oxide, and indirectly ammonia (NH) significantly contribute to climate change and global warming. Conventional monoculture swards for cattle feeding, such as perennial ryegrass or Italian ryegrass, usually require substantial fertiliser inputs. Such management elevates soil mineral nitrogen levels, resulting in GHG emissions and potential water contamination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!