Portable instruments based on X-Ray Fluorescence Spectrometry (XRF) have the potential to assist in field-based studies provided the data produced are reliable. In this study, we evaluate the performance of two different types of XRF instrument (XOS prototype, and Thermo Niton XL3t). These two XRF analyzers were evaluated in a laboratory setting, and data were reported for 17 elements (As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, Sr, Ti, V, and Zn). Samples analyzed (n=38) included ethnic herbal medicine products (HMP), ethnic spices (ES), and cosmetic products (CP). Comparison analyses were carried out using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). In general, results reported for Cd, Cu and Pb by the XOS prototype analyzer, and based on the instrument's non-metal mode, were negatively biased (5 % to 95 %) compared to ICP-OES. In contrast, results reported for Pb, As, Cd, Cu and Zn by the Niton, based on using the soil mode, were positively biased, in some instances (Cd) by up to 4 orders of magnitude. While the sensitivity of both instruments was insufficient for reliably "quantifying" toxic elements below 15 mg/kg, XRF was still capable of positively "detecting" many elements at the low single digit mg/kg levels. However, for semi-quantification estimates of contaminants at higher levels, and with limited sample preparation, both XRF instruments were deemed fit for the purpose. This study demonstrates that modern XRF instrumentation is valuable for characterizing the elemental content of food, cosmetic, and medicinal products. The technology is particularly useful for rapidly screening large numbers of products (100s per day) in the field, and quickly identifying those that may contain potentially hazardous levels of toxic elements. Toxic elements can be confirmed by examining the raw spectrum, and the limitations of factory-based calibration are generally manageable for field-based studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978405 | PMC |
http://dx.doi.org/10.1080/03067319.2015.1114104 | DOI Listing |
Environ Geochem Health
January 2025
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
Coal mining in India, especially open-cast mining, substantially strengthens the economy while concurrently causing environmental deterioration, such as soil pollution with toxic chemicals and heavy metals. This study sought to examine the efficacy of vermicompost as a remediation technique for Mine Tailing Soil (MTS) in the Ledo Coal Fields. During a 120-day duration, different concentrations of vermicompost (20%, 30%, and 40%) were administered to MTS, and the impacts on soil physicochemical parameters, fertility, and plant growth were evaluated.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, TURKEY.
Heavy metal pollution, especially arsenic toxicity, significantly impairs plant growth and development. Phenolic acids, known for their antioxidant properties and involvement in stress signaling, are gaining increased attention as plant secondary metabolites with the potential to enhance plant resistance to these stressors. This study aimed to investigate the effects of different concentrations of syringic acid (SA1, 10 μM; SA2, 250 μM; SA3, 500 μM) on growth, photosynthetic parameters, and antioxidant activity in lettuce seedlings subjected to arsenic stress (As, 100 μM).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
Azole and benzimidazole fungicides are widely used agrochemicals to prevent and treat fungal growth and are frequently detected in aquatic environments. Here, we aimed to assess the aquatic ecological risks of ten currently used azole and benzimidazole fungicides, which with the aryl hydrocarbon receptor (AhR) agonistic activity, and their transformation products (TPs). We obtained over 400 types of aerobic TPs for ten fungicides.
View Article and Find Full Text PDFPhotosynthetica
January 2025
College of Life Science, Northwest Normal University, 730070 Lanzhou, China.
This study aimed to explore the mechanism by which Zn retards Fe toxicity by analyzing the morphological, photosynthetic, and chloroplast physiological parameters of wheat seedlings treated with either single or combined Zn and Fe. Different behavior of the seedlings was observed under untreated and treated conditions. The most discriminating quantitative traits were associated with leaf area, biomass dry mass and fresh mass, net photosynthetic rate, intercellular CO concentration, stomatal conductance, transpiration rate of seedlings, Hill reaction, Mg-ATPase and Ca-ATPase activities, malondialdehyde and O contents, and glutathione reductase, ascorbate peroxidase, peroxidase, and superoxide dismutase activities and their gene expression in the seedling chloroplast.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
Protein-based biomaterials are in high demand due to their high biocompatibility, non-toxicity, and biodegradability. In this study, we explore the bacterial secreted protein A (EspA), which self-assembles into long extracellular filaments, as a potential building block for new protein-based biomaterials. We investigated the morphological and mechanical properties of EspA filaments and how protein engineering can modify them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!