The perception and representation of objects in the world are foundational to all animals. The relative importance of objects' physical properties versus how the objects are interacted with continues to be debated. Neural evidence in humans and nonhuman primates suggests animate-inanimate and face-body dimensions of objects are represented in the temporal cortex. However, because primates have opposable thumbs and interact with objects in similar ways, the question remains as to whether this similarity represents the evolution of a common cognitive process or whether it reflects a similarity of physical interaction. Here, we used functional magnetic resonance imaging (fMRI) in dogs to test whether the type of interaction affects object processing in an animal that interacts primarily with its mouth. In Study 1, we identified object-processing regions of cortex by having dogs passively view movies of faces and objects. In Study 2, dogs were trained to interact with two new objects with either the mouth or the paw. Then, we measured responsivity in the object regions to the presentation of these objects. Mouth-objects elicited significantly greater activity in object regions than paw-objects. Mouth-objects were also associated with activity in somatosensory cortex, suggesting dogs were anticipating mouthing interactions. These findings suggest that object perception in dogs is affected by how dogs expect to interact with familiar objects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.25142DOI Listing

Publication Analysis

Top Keywords

objects
9
functional magnetic
8
magnetic resonance
8
resonance imaging
8
study dogs
8
interact objects
8
object regions
8
dogs
7
mouth matters
4
matters functional
4

Similar Publications

The detection of cysteine (Cys) and homocysteine (Hcy) in biological fluids has great significance for early diagnosis, including Alzheimer's and Parkinson's disease. The simultaneous determination of Cys and Hcy with a single probe is still a huge challenge. To enlarge the differences in space structure (line and ring) and energy (-721.

View Article and Find Full Text PDF

Stress is linked to oxidative imbalance, neuroendocrine system malfunction, and cognitive dysfunction. It is a recognized cause of neuropsychiatric diseases. Natural flavonoid apigenin (API) has neuroprotective and antidepressant properties, but little is known about its potential in restoring memory function under stress-related circumstances.

View Article and Find Full Text PDF

In the realm of access control mechanisms, Attribute-Based Access Control (ABAC) stands out for its dynamic and fine-grained approach, enabling permissions to be allocated based on attributes of subjects, objects, and the environment. This paper introduces a graph model for ABAC, named . The leverages directional flow capacities to enforce access control policies, mapping the potential pathways between a subject and an object to ascertain access rights.

View Article and Find Full Text PDF

High glucose affects the cardiac function of diabetic Akita mice by inhibiting cardiac ATP synthase beta subunit.

Int J Cardiol Cardiovasc Risk Prev

March 2025

Beijing Chaoyang Hospital, Capital Medical University, Department of Endocrinology, Beijing, China.

Object: To explore the mechanism of diabetic cardiomyopathy that hyperglycemia may affect the cardiac function by inhibiting the expression of ATPase β subunit.

Method: Cardiac function, fibrosis levels, and the expression of the ATPase β subunit were observed in Akita mice-a diabetes mice model without lipid metabolism disorders--using morphological, molecular biology, and echocardiographic analyses compared to wild-type mice. The study revealed a connection between the decreased ATPase β subunit and the development of diabetic myocardial injury.

View Article and Find Full Text PDF

Photopyroelectric tweezers for versatile manipulation.

Innovation (Camb)

January 2025

Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.

Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!