Exosomes are small membrane-enclosed vesicles secreted by various types of cells. Exosomes not only participate in different physiological processes in cells, but also involve in the cellular responses to viral infection. Grass carp reovirus (GCRV) is a non-enveloped virus with segmented, double-stranded RNA genome. Nowadays, the exact role of exosomes in regulating the life cycle of GCRV infection is still unclear. In this study, the exosomes secreted from Ctenopharyngodon idellus kidney (CIK) cells infected or uninfected with GCRV were isolated, and the differential protein expression profiles were analyzed by proteomic technologies. A total of 1297 proteins were identified in the isolated exosomes. The differentially abundant proteins were further analyzed with functional categories, and numerous important pathways were regulated by exosomes in GCRV-infected CIK cells. These exosomal proteins were estimated to interact with the genes (proteins) of the top 10 most enriched signaling pathways. Furthermore, GW4869 exosome inhibitor suppressed the expression level of VP7 in GCRV-infected cells, suggesting that exosomes play a crucial role in the life cycle of GCRV infection. These findings could shed new lights on understanding the functional roles of exosomes in the cellular responses to GCRV infection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-021-00939-4DOI Listing

Publication Analysis

Top Keywords

cellular responses
12
gcrv infection
12
exosomes
9
exosomes secreted
8
secreted ctenopharyngodon
8
ctenopharyngodon idellus
8
idellus kidney
8
cells infected
8
grass carp
8
carp reovirus
8

Similar Publications

Astaxanthin (AST), as a natural antioxidant, has broad application prospects in medicine and health products. However, its highly unsaturated structure and significant lipophilic characteristics limit its dispersibility and bioavailability, thereby restricting its application in food, medicines, and nutraceuticals. To overcome these limitations, researchers have proposed the use of nano delivery systems.

View Article and Find Full Text PDF

PMA1-containing extracellular vesicles of triggers immune responses and colitis progression.

Gut Microbes

December 2025

Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

() exhibits aberrant changes in patients with colitis, and it has been reported to dominate the colonic mucosal immune response. Here, we found that PMA1 expression was significantly increased in from patients with IBD compared to that in healthy controls. A Crispr-Cas9-based fungal strain editing system was then used to knock out PMA1 expression in .

View Article and Find Full Text PDF

Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function.

View Article and Find Full Text PDF

Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) plays a critical role in the regulation and progress of autophagy, an essential recycling process that influences cellular homeostasis and stress response. Autophagy is characterized by the formation of intracellular vesicles analogous to recycle "bags" called autophagosomes, which fuse with lysosomes to form autolysosomes, eventually ending up as lysosomes. We have developed two novel autophagic vesicle-targeted peptide-based sensors, for HO and for pH, to simultaneously track HO and pH dynamics within autophagic vesicles as autophagy advances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!