The cichlids of Lake Victoria are a textbook example of adaptive radiation, as >500 endemic species arose in just 14,600 years. The degree of genetic differentiation among species is very low due to the short period of time after the radiation, which allows us to ascertain highly differentiated genes that are strong candidates for driving speciation and adaptation. Previous studies have revealed the critical contribution of vision to speciation by showing the existence of highly differentiated alleles in the visual opsin gene among species with different habitat depths. In contrast, the processes of species-specific adaptation to different ecological backgrounds remain to be investigated. Here, we used genome-wide comparative analyses of three species of Lake Victoria cichlids that inhabit different environments-Haplochromis chilotes, H. sauvagei, and Lithochromis rufus-to elucidate the processes of adaptation by estimating population history and by searching for candidate genes that contribute to adaptation. The patterns of changes in population size were quite distinct among the species according to their habitats. We identified many novel adaptive candidate genes, some of which had surprisingly long divergent haplotypes between species, thus showing the footprint of selective sweep events. Molecular phylogenetic analyses revealed that a large fraction of the allelic diversity among Lake Victoria cichlids was derived from standing genetic variation that originated before the adaptive radiation. Our analyses uncovered the processes of species-specific adaptation of Lake Victoria cichlids and the complexity of the genomic substrate that facilitated this adaptation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321545PMC
http://dx.doi.org/10.1093/molbev/msab084DOI Listing

Publication Analysis

Top Keywords

lake victoria
20
victoria cichlids
16
species-specific adaptation
12
adaptation lake
8
cichlids derived
8
standing genetic
8
genetic variation
8
adaptive radiation
8
highly differentiated
8
processes species-specific
8

Similar Publications

Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.

View Article and Find Full Text PDF

GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19.

Nature

May 2023

Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.

Article Synopsis
  • Researchers analyzed genetic data from 24,202 critically ill COVID-19 cases, showing that host genetics can help identify effective immunomodulatory therapies.
  • They conducted a meta-analysis that revealed 49 significant genetic associations, including 16 new ones not previously reported.
  • Key findings include potential drug targets related to inflammation, immune response, and viral entry, which could lead to new treatment strategies for severe COVID-19 cases.
View Article and Find Full Text PDF
Article Synopsis
  • Critical COVID-19 is linked to immune system damage in the lungs, showing that genetics play a key role in severe cases requiring hospitalization.
  • The GenOMICC study analyzes the genomes of 7,491 critically ill patients against 48,400 controls, uncovering 23 genetic variants that increase the risk for severe COVID-19, including new associations related to immune response and blood type.
  • The findings suggest that both viral replication and heightened lung inflammation contribute to critically ill cases, highlighting potential genetic targets for new treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!