Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Activity concentrations of radionuclides (U, Ra, Th, and K) in the sediments of eight sampling stations and heavy metal concentrations (Cr, Co, Ni, Cu, Zn, As, Cd, and Pb) in the sediments of two long cores from Nansha Sea area were obtained by high-purity germanium spectroscopy and inductively coupled plasma atomic emission spectrometry. In a correlation analysis between the radionuclides and heavy metals, Th was positively correlated with As and Pb. U demonstrated a significant positive correlation with Co, Ni, Cu, Zn, and Cd. K was positively correlated with Co, Ni, and Cu. The geo-accumulation index, pollution load index, potential ecological risk index, and multivariate statistical techniques were used to evaluate the pollution degree and possible sources of heavy metals in the sediments. An ecological risk assessment suggested that Cr, Co, Ni, Cu, Zn, Cd, and Pb were primarily derived from natural processes, while the source of As may be related to natural processes and human activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2021.112192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!