AI Article Synopsis

Article Abstract

Fully understanding the regulatory network under the pluripotency of embryonic stem cells (ESC) is a prerequisite for their safe application. Here, we addressed the characteristics of metastasis-associated (MTA) family members in human ESCs and found that knockdown of the expression of MTA2 and MTA3, but not MTA1, would induce differentiation. High-throughput sequence and quantitative real-time PCR showed that the decreased MTA2 or MTA3 gene transcript mainly led to the emergence of mesendoderm associated markers. Finally, based on the chemical small molecule library screening, we observed that addition of ID8, a specific inhibitor of the dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), was able to impair the differentiation phenotype induced by MTA2 and MTA3 reduction. Functional assay showed that ID8 could mediate differentiation caused by MTA2 or MTA3 knockdown mainly through inhibition of DYRK4 activity. Therefore, our finding provides the evidence that the functions of MTA family genes in human ESCs are different. Revealing the function of MTA in ESCs with different pluripotency states will help us better understand and apply stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.03.030DOI Listing

Publication Analysis

Top Keywords

mta2 mta3
20
stem cells
12
embryonic stem
8
mta family
8
human escs
8
mta3
5
inhibition mta2
4
mta3 induces
4
induces mesendoderm
4
mesendoderm specification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!